
orking memory is, essentially, what we think of
as thought. It is our mental sketchpad, where we hold
information “in mind” and process it. Naturally, it has
garnered much empirical interest, and this has yielded a
robust and commonly reported neural correlate: sus-
tained neural activity. Sustained activity can be seen
when humans and animals are performing tasks thought
to engage working memory. Delayed response tasks, for
example, include a short gap in time (seconds) between
a sensory cue and the opportunity to act based on that
cue. Higher cortical areas, especially the prefrontal cor-
tex (PFC), the putative “executive” cortex, show ele-
vated levels of neural activity over that delay, as if the
neurons are bridging the gap by sustaining their firing to
cue. Because short-term buffering of information in an
active “online” state is a keystone of working memory,
sustained delay activity has become virtually synony-
mous with “working memory,” at least to neuroscientists.
However, it is important to keep in mind that Baddeley’s
original working memory model was meant to be a
model of cognition and that there is more to thought
than short-term memory (Figure 1).1 Imagine planning a
simple errand. You do not just hold elements of the plans
in mind; you weigh alternatives, make decisions, and
order the thoughts until you think the plan achieves your
objectives. In short, there is more to working memory
than “memory”; there is also the “working.” Indeed,
what sets working memory apart from mere short-term
storage and elevates it to a model of cognition writ large
is the inclusion of a “central executive” (Figure 1), a set
of mechanisms that together act to manage and regulate
what we hold “in mind” (ie, contents of the short-term
memory buffers). These executive functions are less well
understood because they are less tractable than short-
term buffering of information. But we have made
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progress. Here, we review work on the neural correlates
of working memory and suggest candidate mechanisms.

Executive control, rules, 
and the prefrontal cortex

By definition, controlled thought and action are goal-
directed and organized toward the completion of tasks.
Consider a common cognitively demanding situation:
navigating an airport. From the start, we know that we
need a ticket, have to wait in line, board at the right gate,
etc. We are not born knowing this; we have to learn the
rules. As such, the neural substrates for executive con-
trol need to have access to the wide range of informa-
tion needed to identify potential goals and the rules that
can achieve them. This no doubt depends on many dif-
ferent brain areas. However, one cortical region is par-
ticularly necessary (but not sufficient): the PFC. It is this
cortical area that reaches the greatest relative size in the
human brain and is thus thought to be the neural instan-
tiation of the mental qualities that we think of as “intel-
ligent.”
The PFC is anatomically well situated to play a role as
the brain’s executive. It receives information from, and
sends projections to, forebrain systems that process infor-
mation about the external world, motor system structures
that produce voluntary movement, systems that consoli-
date long-term memories, and systems that process infor-
mation about affect and motivational state.2-5 This
anatomy has long suggested that the PFC may be impor-
tant for synthesizing the external and internal informa-
tion needed to produce complex behavior.
Neurophysiological studies suggest that this synthesis
serves to form representations of task rules (for reviews
see refs 6-8). This has been shown in studies that sys-
tematically vary task demands; subjects perform a dif-
ferent set of operations or make different decisions using

the same set of sensory inputs and motor options. For
example, in one trial the subject may have to choose one
of two pictures that matches one seen previously (a
match rule); in another trial the subject has to choose the
nonmatching picture (a nonmatch rule).9 These types of
experiments have revealed that the PFC neural activity
is highly sensitive to rule information. In fact, unlike sen-
sory cortex, especially primary sensory cortex, it appears
that task rules are more influential on how information
is distributed across PFC neurons than bottom-up sen-
sory information. More neurons reflect task demands
than sensory information, indeed often at the expense of
sensory information.10-11 Interestingly, cognitively
demanding tasks engage a very large proportion of PFC
neurons; after training, as many as 30% to 40% of ran-
domly selected PFC neurons show task-related activ-
ity.9,12-15

So many PFC neurons (one third or more of the popu-
lation) dedicated to a given rule might, at first blush,
make it seem as if the PFC can only learn a few tasks. If
the one third of PFC neurons represent the rules of one
task, does that mean that only three tasks can be
learned? In fact the opposite is true. Many PFC neurons
are multitaskers with “mixed selectivity.” 10 This mixed
selectivity does not fit into the traditional view of brain
function in which individual neurons have been thought
to be specialized for single functions. Instead, in the PFC,
neural specialization waters down in a mix of disparate
information; there is no obvious function that unites the
variety of information signaled by the individual neu-
rons. Why this mixed selectivity, and why so many neu-
rons? The answer is that large proportions of mixed
selectivity neurons expand the brain’s computational
power, increasing the complexity and number of task
rules that can be learned, and speeding up their acquisi-
tion.16,17 The high dimensionality of the representational
space they support allows learning algorithms to con-
verge more quickly and reduces the plasticity mecha-
nisms needed. Because mixed selectivity neurons
already have a mixture of task-relevant information,
only the readout neurons have to be modified during
learning. In short, mixed selectivity amplifies our ability
to quickly learn (and flexibly implement) complex
rules.16,18

Thus, the PFC seems to be a neural substrate ideal for
absorbing the constellation of disparate information that
forms rules. But how exactly does rule information exert
control? Miller and Cohen8 suggested a possibility. Their
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Figure 1. Baddeley’s working memory model. This includes short-term
memory buffers (visuospatial and phonological loops) under the
control of a central executive. Many experiments in neuroscience
have focused on the short-term memory loops; here the execu-
tive is focused on.
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central idea is that PFC rule representations are not eso-
teric descriptions of the logic of a task. Rather, the rules
are represented in a particular format: as a map of the
cortical pathways needed to perform the task
(“rulemaps”—Figure 2). In other words, a task’s rules in
the PFC are also maps of the neural pathways within
and between other cortical regions that need to be
engaged to solve the current task. In a given situation,
cues about the current situation (context) and other
external and internal cues activate and complete the
PFC rulemap that includes that information as well as
the course of action that has proven successful in the
past. Rulemap activation (which can be sustained, if
needed) sets up bias signals that feed back to other brain
areas, affecting sensory systems as well as the systems
responsible for response execution, memory retrieval,
and emotional evaluation. The cumulative effect is the
selection of the pattern of neural circuits that guide the
flow of neural activity along the proper mappings
between inputs, internal states, and outputs to reach the
goal. It is as if the PFC is a conductor in a railroad yard

and learns a map that it uses to guide trains (neural
activity) along the right tracks (neural pathways). Next,
we consider how these rulemaps are acquired.

Teaching by dopamine

You can not learn rules unless you have some idea about
the consequences of your actions. Simply put, the brain
must strengthen neural connections that are successful
at achieving a goal (rewarded), while breaking or weak-
ening those that are ineffective. Dopamine (DA) neu-
rons in the midbrain (ventral tegmental area and the
substantia nigra, pars compacta) may provide this teach-
ing signal.
At first, DA neurons activate to unexpected rewards, but
then after a repeated pairing of a cue ( eg, “bell”) with a
reward ( eg, “dinner”), they stop activating to the reward
and activate to the cue as if the cue is a “stand-in” for the
reward.19 Add another cue ( eg, a light flash) that predicts
the first cue (bell) and after a number of pairings the DA
neurons will now activate to the light and no longer to
the bell or dinner. Thus, DA neurons respond to the ear-
liest unexpected event in a chain of events that are
known to end in reward. They also pause their firing
when an expected reward is withheld. Thus, their activ-
ity seems to correspond to prediction error signals in
models of animal learning.20 They are essential teaching
signals that say “something good happened and you did
not predict it, so remember what just happened so that
you can predict it in the future.” As the organism learns
and becomes an increasingly better predictor of what
will lead to reward, DA neurons will activate progres-
sively earlier, linking in the network of information
needed to navigate toward that reward. The PFC is a
main target of midbrain DA neurons.21,22

Balancing different styles of learning

Normal learning has to find a balance between different
demands. It is obvious that learning things quickly is
often advantageous. You want to learn to get to the
resources faster than your competitors. But there are
also disadvantages in that fast learning: it is error-prone.
If, for example, you have one-trial learning, you may mis-
take a coincidence for a real predictive relationship.
Consider taste aversion. We often develop distaste for a
food simply because we became ill after we ate it, even
when that food had nothing to do with our illness. With

Figure 2. Miller and Cohen model of executive control. Shown are pro-
cessing units representing cues such as sensory inputs, current
motivational state, memories, etc (C1, C2, and C3), and those
representing two voluntary actions (eg, “responses”, R1 and
R2). Excitatory signals from the prefrontal cortex (PFC) feed
back to other brain systems to enable task-relevant neural
pathways. Thick lines indicate well-established pathways medi-
ating a prepotent behavior that can be overcome by top-down
PFC signals that activate an alternative pathway. Red indicates
active units or pathways. BG, basal ganglia; DA, dopamine
Adapted from ref 8: Miller EK, Cohen JD.  An integrative theory of pre-
frontal cortex function. Annu Rev Neurosci. 2001:24:167-202.  Copyright
© Annual Reviews Inc
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slower learning rates, more experience can be taken into
account, and this allows organisms to detect the regu-
larities that indicate predictive relationships and leave
behind spurious associations and coincidences. Further,
slower, more deliberate learning also provides the
opportunity to detect common structures across differ-
ent experiences. It is these commonalities that form the
abstractions, general principles, concepts, etc critical for
sophisticated thought. We learn the concept of “fairness”
from specific instances of being treated fairly or unfairly.
Given the advantages and disadvantages associated with
both forms of learning, the brain must balance the obvi-
ous pressure to learn as quickly as possible with the
advantages of slower learning. The key to this may be
balance and interactions between the PFC and the basal
ganglia (BG).
The BG is a collection of subcortical nuclei that, similar
to the PFC, have a high degree of convergence of corti-
cal inputs. The frontal cortex receives the largest por-
tion of BG outputs (via the thalamus), suggesting a
close collaboration between the BG and frontal cor-
tex.23,24 DA acts not only on the PFC but also on the BG.
Importantly, the DA projections into the striatum (the
input to the BG where cortical information converges)
are much heavier than those to the PFC.25 Thus, DA
teaching signals may play a stronger role in gating plas-
ticity in the striatum in contrast to the PFC, where DA
influence may be more subtle—shading, not gating,
plasticity. This may explain our observation that during
operant learning, learning-related changes in the stria-
tum appear sooner and faster than those in the PFC.26

Thus, the trade-off between the advantages of slow plas-
ticity versus fast plasticity may play out in interactions
between the PFC and BG.27

The idea is that during learning, specific associations
between cues and immediate actions are quickly
acquired by the striatum, by virtue of its heavy inputs
from midbrain DA neurons. The output of the basal gan-
glia trains the PFC26 where plasticity is “slower” (smaller
changes in synaptic weights with each learning episode)
because of the weaker DA influence. As a result, the
PFC gradually builds up less error-prone, more elabo-
rate, and generalized representations based on the pat-
terns fed to it by the BG. This may explain why the PFC
and BG seem to operate based on different types of rep-
resentational schemes.28 The fast striatal plasticity may
be more suited for a quick stamping-in of immediate,
direct associations. But, as a consequence, the striatum

learns complex behaviors in a piecemeal fashion, as a set
of largely unconnected (cache) representations of which
alternative was more successful at each decision point in
the task.28 By contrast, the slow PFC plasticity may be
suitable for building elaborate rule representations that
gradually link in more information (ie, tree-like repre-
sentations).28 The slow PFC plasticity may also find the
commonalities and regularities among the simpler rep-
resentations acquired by the striatum that are the basis
for abstractions and general principles.29 In other words,
the striatum learns the pieces of the puzzle while the
PFC puts the puzzle together. 27

We recently witnessed this hand-off from the striatum to
PFC as animals transitioned from simple, specific learn-
ing to more generalized, abstract representation.30 Each
day, monkeys learned to associate two novel, abstract,
dot-based categories with a right vs left saccade (Figures
3A and 3B). At first, monkeys only saw a few examples
of each category, and they could learn specific stimulus-
response (S-R) associations by rote. But as more and
more new category exemplars were added, the capacity
to memorize specific S-R associations was exceeded. To
solve the task, the monkeys then had to learn the cate-
gories, and extract the common essence that united
exemplars from the same group. As predicted, we saw
neurophysiological evidence for a transfer of control of
the task from the BG to the PFC over learning. Early,
during S-R, learning striatum activity was an earlier pre-
dictor of the corresponding saccade (Figure 3C).
However, as the number of exemplars exceeded the
capacity of S-R learning and animals had to learn the cat-
egories, the PFC took over and began predicting the sac-
cade before the striatum (Figure 3C). This dual-learner
strategy allows the animal to perform optimally through-
out the task; early on the striatum can learn associations
quickly, while later in the task, when learning associations
is no longer viable, PFC guides behavior.
Primates, especially humans, can learn a wide range of
abstract categories like “peace.” But truly intelligent
behavior depends on more than finding high-level struc-
ture across experiences. Humans can be creative and
unique in finding new goals and strategies to pursue
them. This means that the mechanisms that build the
PFC rule representations must have a corresponding
ability for open-ended growth. Another aspect of PFC-
BG interactions may explain this. Anatomical loops
between them may support recursive, bootstrapping
interactions.
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Recursivity and bootstrapping

The anatomical connections between the PFC and BG
suggest “bootstrapping,” the process of building increas-
ingly complex representations from simpler ones. The
PFC and the BG form closed loops: channels within the
BG return outputs, via the thalamus, into the same cor-
tical areas that gave rise to their initial cortical input.
This suggests some form of recursive processing.23,24 That

is, the neural representations that result from plasticity
within and between the PFC and BG form cortical rep-
resentations that can be fed back into the loop as fodder
for further elaboration. In this manner, new experiences
can be added onto previous ones, linking in more infor-
mation to build more elaborate rule representations. It
can allow the discovery of commonalities among more
experiences and thus more high-level concepts and prin-
ciples. Indeed, we often ground new concepts in familiar
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Figure 3. Specific vs generalized learning in basal ganglia vs prefrontal cortex. (A) Category-response association task. Animals were presented with a cue
stimulus (an array of dots) that were exemplar stimuli created by morphing stimuli from one of two category prototypes. (B) The animals learned
to associate each category with either a leftward or rightward saccade. After learning the associations for a given set of exemplars, new exem-
plars were added to the set, requiring the animal to generalize the learned association to these new stimuli. Earlier in training the animals were
able to associate individual stimuli with a response (C, bottom row) but then, as the number of exemplars increased, they were forced to acquire
the category (C, middle row), eventually generalizing to new stimuli (C, top row). Selectivity for the associated response was found in both pre-
frontal cortex and striatum. Early in training, during the stimulus-response phase, selectivity was seen earlier and stronger in striatum. However,
prefrontal cortex took a lead role after generalized categories were learned (phase II and III). S-R, stimulus-response
Adapted from ref 30: Antzoulatos EG, Miller EK. Differences between neural activity in prefrontal cortex and striatum during learning of novel, abstract categories.
Neuron. 2011;71:243-249. Copyright © Cell Press 2011
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ones because it seems to ease our understanding of
novel ideas; we learn multiplication by serial addition,
exponentiation by serial multiplication, etc.
The frontal cortex–BG loops also suggest an auto-asso-
ciative type network, similar to that seen in the CA3 cell
layer of the hippocampus. The looping back of outputs
allow the network to learn to complete (ie, recall) pre-
viously learned patterns given a degraded version or a
subset of the original inputs.31 Given the DA influence,
the PFC-BG loops may be more goal-oriented (super-
vised) than hippocampal learning and memory. They
could even explain the DA reward prediction signals. As
previously described, midbrain DA neurons respond to
earlier and earlier events in a predictive chain leading to
a reward. Both the frontal cortex and the striatum send
projections into the midbrain DA neurons, possibly
underlying their ability to bootstrap to early predictors
of reward.
The loops may also explain another important aspect of
goal-directed behavior: the sequencing of thought and
action. A key feature of auto-associative networks is
their ability to learn temporal sequences of patterns and
thus make predictions. This relies on the activity pattern
being fed back into the network with a temporal lag,
allowing the next pattern in the sequence to arrive as the
previous pattern is fed back, building an association.32,33

Inhibitory synapses in the pathways through the BG
may add the temporal delay needed, as they have a
slower time constant than excitatory synapses. Another
way to add lag is via a memory buffer. As highlighted
earlier, the PFC is well-known for this type of property;
its neurons can sustain their activity to act as a bridge for
learning contingencies across several seconds, even min-
utes. The introduction of lag into the recursive loop
through either mechanism (or both) may be enough to
allow sequencing and prediction. This would seem to be
key to the development of tree-like rule representations
that describe an entire sequence of goal-directed actions
(discussed above).

A brief word about capacity limitations

Despite the remarkable power and flexibility of human
cognition, our working memory—the “online” workspace
that most cognitive mechanisms depend upon—is sur-
prisingly limited. An average adult human has a capacity
to retain only four items at a given time.34,36 Why this lim-
ited capacity? The answer may lie in the mixed selectiv-

ity neurons that amplify the brain’s computational power
(as previously discussed). Mixed selectivity neurons that
participate in many different functions would seem to
create problems. Don’t downstream neurons sometimes
receive signals that are irrelevant or counterproductive?
A solution is oscillatory brain rhythms.
It has long been known that brain waves (coordinated
oscillations among many neurons) vary their frequency
with cognitive focus. Oscillations create synchronous
spikes that can have a greater impact than unsynchro-
nized spikes, as they all arrive simultaneously at down-
stream neurons They could allow neurons to communi-
cate different messages to different targets depending
on those with which they are synchronized (and how, eg,
phase, frequency).
Evidence for this comes from a variety of studies.
Different frequency synchronization between human
cortical areas supports recollection of spatial vs tempo-
ral information.37 Different phases of cortical oscillations
preferentially signal different pictures simultaneously
held in short-term memory.38 Monkey frontal and pari-
etal cortices synchronize more strongly at lower vs
higher frequency for top-down vs bottom-up attention,
respectively.39 Entraining the human frontal cortex at
those frequencies produces the predicted top-down vs
bottom-up effects on behavior.40 Thus, activity from the
same neurons has different functional outcomes depend-
ing on their rhythmic dynamics.
This suggests that our brain does not operate continu-
ously, but rather discretely, with pulses of activity rout-
ing packets of information.41 Such discrete cycles would
provide a backbone for coordinating computations (and
their results) across disparate networks. They can pro-
vide a substrate via which the PFC can “direct traffic,”
guiding the flow of neural activity along pathways that
establish the proper mappings between inputs, internal
states, and outputs needed to perform a given task.
However, it comes at a cost: oscillations are naturally
limited in bandwidth; only so many things can be com-
puted or carried in a single oscillatory cycle. This can
explain the most fundamental property of consciousness,
the limited capacity for simultaneous thought.
Interestingly, Duncan and colleagues have linked indi-
vidual differences in fluid intelligence to each person’s
working memory capacity for task rules.42 This suggests
that fluid intelligence may depend on how much rule
information from mixed selectivity neurons can be
packed into an oscillatory cycle.
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Summary

Here we have reviewed evidence and suggested mecha-
nisms and substrates to help provide a neurobiological
explanation for executive functions—that is, neurobio-
logical rather than homuncular. We have discussed how
interactions and balance between different styles of plas-
ticity in the PFC and BG acquire the rules of the game
needed to organize goal-directed thought and action. The
computational power to quickly learn, store, and flexibly
implement the large number of complex rules may be
provided by large proportions of mixed selectivity, adap-
tive multifunction neurons (and other higher cortical
areas). Synchronization of oscillatory rhythms between

neurons in local and global networks may disambiguate
the output of the mixed selectivity neurons, allowing
them to selectively participate in different networks with
different functions by virtue of synchrony at different fre-
quencies, phases, etc. Executive control may result when
rule information in the PFC dynamically establishes net-
works that link together the corresponding information
throughout the cortex. If oscillatory synchrony indeed
plays this role, it could explain why conscious thought is
so limited in bandwidth. Any oscillatory signal has a nat-
ural bandwidth limit; only so much information can be
packed into a cycle. And with a limited bandwidth, it is
critical to have executive functions that can single-mind-
edly focus those limited resources on the task at hand. ❏
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