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We review the neural mechanisms that support top-down control of behaviour

and suggest that goal-directed behaviour uses two systems that work in con-

cert. A basal ganglia-centred system quickly learns simple, fixed goal-directed

behaviours while a prefrontal cortex-centred system gradually learns more com-

plex (abstract or long-term) goal-directed behaviours. Interactions between

these two systems allow top-down control mechanisms to learn how to direct

behaviour towards a goal but also how to guide behaviour when faced with a

novel situation.
1. Introduction
We all have goals—a desired state of the world that we want to achieve. Goals

come in many different forms. They can range from short-term, such as finding

a snack when hungry, to long-term, such as working towards tenure. Goals can

also vary from concrete, such as searching for your keys, to abstract, such as

wanting to exercise more. Regardless of their form, all goals share a common

thread: one must act on the world in order to achieve them. Therefore, achiev-

ing one’s goal is by necessity a forward-looking proposition: you try to act upon

the world in such a way that its future state will match your desired state.

Such forward-looking behaviour relies on one’s previous experience.

Through our experiences, we learn how the world behaves and how our actions

can change it. The result of this learning is an internalized model of the world,

which we can then use to project how the world will behave in the future. For

example, if our goal is to find our keys, we might use our previous experience to

guide our search towards locations where keys are usually located (e.g. in our

bag). Similarly, our internal models can be more abstract, allowing us to gener-

alize them to guide behaviour in previously unseen circumstances (e.g. we can find

someone else’s keys in their office by looking in likely places or following their

directions). Application of these models is the essence of ‘top-down’ or ‘execu-

tive’ control: one must use previous knowledge to plan appropriate actions and

then keep ‘on task’ while achieving the goal. This is the core of intelligent,

rational, behaviour—it allows us to not just react to the world but act upon it

in order to obtain a desired outcome.

Here, we discuss the neural mechanisms that support such top-down control.

Specifically, we suggest goal-directed behaviour uses two complementary sys-

tems that can explicitly learn the relationships between actions and outcomes:

the basal ganglia (BG) allows simple, fixed, goal-directed behaviours to be quickly

learned, whereas the prefrontal cortex (PFC) gradually learns more complex

(abstract or long-term) goal-directed behaviours. We then propose a model of

how interactions between these two systems can form an ‘iterative engine’ that,

through top-down control mechanisms, directs behaviour towards a goal, even

when faced with a novel situation.

2. Top-down control depends on a balance between quick, but
concrete, and gradual, but abstract, learning

Goal-directed behaviour relies on learning how to achieve one’s goals; that is,

learning the relationship between situations, actions and their outcomes. In

many situations, one might expect that this learning should proceed as quickly
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as possible. Indeed, both humans and animals can quickly learn

simple, concrete, associations. For example, a monkey will

rapidly learn to associate a particular visual image with a

specific, rewarded, motor response (less than 15 trials, e.g.

[1]). This certainly makes sense from an evolutionary stand-

point: adapting faster than competing organisms will provide

a clear advantage in obtaining rewarding outcomes or avoiding

harmful ones. However, learning quickly comes at a cost. It may

lead to erroneous associations (i.e. coincidences). For example,

many of us have experienced superstitious behaviour—an

attribution of an outcome to an action despite no mechanistic,

causal relationship (e.g. baseball players retightening their

batting gloves after every pitch). Similar effects are seen when

training artificial neural networks: high learning rates allow

the network to quickly converge on a reasonable behaviour,

however, (i) learning is often biased towards initial training

exemplars and (ii) the network is less stable than networks

with lower learning rates (due to the network making big

jumps in parameter space with each input; see [2,3] for more

on artificial neural networks).

Extending learning over multiple experiences improves the

reliability of the association as ‘noisy’, spurious, correlations

are lost and true associations are strengthened. It is also how

the ‘deep’ structure of the world can be discovered. It is the

commonalities across experiences that reveal general principles

and concepts. Although they come at the cost of requiring more

time to develop, such generalized principles have several

advantages. First, abstract representations are, by definition,

more ‘compact’ than a more detailed one. Second, generalized

principles allow you to act intelligently in a novel situation.

Because abstract representations lack non-critical details, they

more easily generalize to new circumstances.
3. The neural mechanisms of fast versus gradual
learning

Given the advantages (and disadvantages) associated with

each form of learning, the brain must balance the pressure to

learn as quickly as possible with the benefits of gradual learn-

ing. One obvious solution is that both mechanisms are used by

the brain, perhaps in complementary neural systems. O’Reilly

and co-workers [4] have suggested exactly this type of dynamic

exists between fast-learning in the hippocampus and more

gradual learning in cortex. Studying the consolidation of

long-term memories, McClelland et al. [4] suggest fast-

plasticity mechanisms within the hippocampus are able to

quickly capture new memories while ‘training’ the slower

learning cortical networks. This takes advantage of the special-

ization of the hippocampus for rapidly acquiring new

information; each learning trial produces large weight changes.

They suggest the output of the hippocampus will then repeat-

edly activate cortical networks that learn over time with

smaller weight changes per episode. Continued hippocam-

pal-mediated reactivation of cortical representations allows

the cortex to gradually connect these representations with

other experiences. That way, the shared structure across experi-

ences can be detected and stored, and the memory can be

interleaved with others. In the hippocampus, this process pro-

ceeds very slowly. For example, bilateral resection of the

hippocampus of patient HM resulted in retrograde amnesia

for approximately 2 years before surgery, suggesting it takes

at least 2 years for full consolidation of memories [5].
This architecture—fast-learning in more primitive, non-

cortical structures training the slower, more advanced,

cortex—may be a general brain strategy. In addition to being

suggested for the relationship between the hippocampus and

cortex, it has also been proposed for the cerebellum and cortex

[6]. This makes sense: evolutionary pressure on our cortex-less

ancestors was presumably towards faster learning, whereas

only later were resources available to add a slower, more judi-

cious and flexible cortex. We propose that learning of the

associations needed for goal-directed behaviour occurs in a simi-

lar manner: the BG, a set of subcortical structures, rapidly learn

simple associations while gradual learning in the PFC forms

more robust, complex and abstract representations.
4. Gradual learning in the prefrontal cortex;
fast-learning in the basal ganglia

Goal-directed behaviour relies on the associations learned

through previous experiences: we base our estimate of what

action is appropriate at the moment on what possible outcome

is associated with each possible action. These action-outcome

associations were previously captured through learning by

strengthening the associations among contexts, actions and out-

comes that successfully achieved a goal (i.e. they are rewarded).

Conversely, associations that are ineffective at obtaining a

reward are weakened. Such learning is ‘supervised’ in that it

requires a teaching signal that reinforces successful associations

(and degrades unsuccessful ones). Dopamine (DA) neurons in

the midbrain are thought to provide exactly this teaching signal.

Dopaminergic neurons in two midbrain regions (the ven-

tral tegmental area, VTA, and the substantia nigra, pars

compacta, SNpc), signal a ‘reward prediction error’ [7,8].

This signal is simply the difference between expected rewards

and received rewards. For example, it is positive (and neur-

ons are active), when the animal receives an unexpected

reward. However, this response disappears if the reward is

predicted by a stimulus or an action (as the reward is now

expected). Instead, DA neurons will respond to the associated

stimulus (or action), as it now ‘stands-in’ for the reward and

occurs unexpectedly [8]. By contrast, if an expected reward is

not received, DA neurons are inhibited, providing feedback

that recent behaviour was not effective in obtaining a

reward. These reward signals are thought to act as a teaching

signal by affecting recently active synaptic connections:

strengthening those synapses that are followed by a reward

signal while weakening those that do not lead to reward.

As we detail next, this simple rule turns out to be incredibly

powerful, providing the mechanism that associates context,

stimuli and actions that lead to reward.

This teaching signal is thought to act on synapses

throughout the brain, but make the largest impact on frontal

cortex and the BG since midbrain DA neurons send heavy

projections into PFC and the striatum (the main input of

the BG, figure 1). Projections into frontal cortex show an

anterior to posterior gradient: heaviest in anterior cortex

and falling-off as you move posteriorly, suggesting a prefer-

ential input of reward information into the PFC relative to

posterior cortex [9,10]. Interestingly, the input of midbrain

DA into the striatum is much heavier than that of the PFC,

by as much as an order of magnitude [11]. Furthermore,

DA neurons make connections close to the synapse that stria-

tal neurons form with cortical neurons. Indeed, evidence

http://rstb.royalsocietypublishing.org/
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suggests that neither strengthening nor weakening of synapses

in the striatum by long-term potentiation or depression can

occur without DA input [12–14]. By contrast, DA inputs to

the cortex are weaker and synapse on the dendrites. Thus,

DA may play a strong role in gating plasticity in the striatum

while having a more subtle influence in the cortex [15].

We suggest this difference in the way DA influences plas-

ticity in the striatum and PFC leads to a difference in how

associations are learned in each region. Specifically, we

propose DA strongly influences plasticity in the striatum,

producing simple, concrete associations. By contrast, DA

has a milder effect in PFC, slowly biasing connections, allow-

ing learning to integrate over many experiences and resulting

in a more abstract representation. Differences in learning

speed between PFC and striatum were observed in an exper-

iment by Pasupathy & Miller [16]. Monkeys were trained to

associate a visual cue with an eye movement either to the

left or to the right (in order to receive a reward). Learning

occurred over approximately 60 trials, after which the associ-

ations were reversed, and the animals had to re-learn new

associations. In order to track this learning process across

neurons in both PFC and striatum, Pasupathy & Miller

recorded from both regions simultaneously. Consistent with

a fast-plasticity model of BG, neurons in the striatum

showed rapid learning, quickly associating a stimulus with

the behavioural response (5–10 trials). By contrast, neurons

in PFC showed much slower learning (approx. 30 trials, clo-

sely following improvements in behaviour). This difference

in learning speed between PFC and BG is consistent with

our hypothesis: simple, concrete associations, such as

between a stimulus and a motor response, are first identified

by the striatum, while slower learning mechanisms in PFC

capture associations over a longer time period.

The advantage of such slow-learning in PFC is that it

allows learning to integrate over more experiences, construct-

ing a more generalized representation. These generalized

representations are crucial to acting appropriately when
faced with a new situation. Evidence for this specific versus

generalized trade-off between the striatum and the PFC

during learning comes from Antzoulatos & Miller [17], who

recorded from multiple electrodes in the lateral PFC and

dorsal striatum while animals learned two categories of

stimuli. Each day, monkeys learned to associate novel,

abstract dot-based categories with a right versus left saccade.

Learning occurred over several ‘blocks’ of trials. During each

block, the animal learned the associated movements for a

specific set of exemplar stimuli from each category (left

versus right). Early blocks of trials consisted of only a few

exemplars, allowing the animal to associate each specific

stimulus with the appropriate response. However, the size

of the set of stimuli grew with each additional block during

the day, and so the animal was forced to learn the category
of stimuli in order to make the appropriate response to

novel exemplars (i.e. those they had never before seen).

Neurons in PFC and BG played different roles during these

two types of behaviours. Early on, when they could acquire

specific stimulus–response associations, striatum activity was

an earlier predictor of the corresponding saccade. However,

as the number of exemplars increased, the monkeys had to

form abstractions to classify them. It was at this point that

the PFC began predicting the saccade associated with each cat-

egory (and doing so before the striatum). Thus, it seems that the

striatum was leading the acquisition early on when behaviour

could be supported by simple stimulus–response learning.

However, when the abstraction requirements exceeded that

of the simple striatum cache representations, the PFC took

over. In this case, the slower learning, associative activity

of PFC is ideal for the integration of stimulus properties

over many exemplars, allowing for a generalized ‘concept’

of categories to be learned. This dual-learner strategy allows

the animal to perform optimally throughout the task—early

on striatum can learn associations quickly while later in the

task, when learning associations is no longer viable, PFC

guides behaviour.

http://rstb.royalsocietypublishing.org/


PFC captures
entire task
structure

basal ganglia learn
simple associations

S3
R3

S2
R2 R'2 R'3

R'1
S1R1

+++ ++ ++– –

+ positive reward
– negative reward

representing complex
tasks in a tree structure

state

response

outcome

Figure 2. Tree representation of complex tasks. A complex task can be mod-
elled as a set of states (S, circles) with several possible behavioural responses
(R, arrows). A response can either lead to a new state or an outcome
(squares, either positive, green or negative, red). The fast learning in BG is
thought to be ideal for capturing single nodes in the tree (blue cloud)
while the slower learning in PFC can capture the entire task (yellow
cloud). This more complete view of the task allows for immediately more
rewarding responses (e.g. R01) to be avoided for longer term goals (e.g. R1

followed by R2).

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130471

4

 on October 16, 2014rstb.royalsocietypublishing.orgDownloaded from 
5. Interactions between learning in prefrontal
cortex and basal ganglia

So far we have discussed how complementary learning sys-

tems in the BG and PFC may allow an animal to balance

the need to learn quickly and robustly. However, it is important

to note that these systems do not work in isolation. Instead,

they are tightly and reciprocally interconnected with one

another (figure 1). Indeed, connections between cortex and

BG are thought to create segregated ‘loops’: the connections

between nuclei in the BG are maintained such that the

output from the BG (via the thalamus) was largely to

the same cortical areas that gave rise to the initial inputs into

the BG [18]. Owing to the close relationship between cortex

and striatum, neurons in both areas tend to have similar

responses (e.g. in visual cortex and associated striatum, [19]).

Further highlighting the importance of these loops to normal

cognitive function, damage to a sub-region of the striatum

causes deficits similar to those caused by lesions of its

‘looped’ cortical region [20,21]. For example, lesions of the

regions of the caudate associated with the frontal cortex

result in cognitive impairments. In addition, the closely inter-

connected relationship between BG and PFC would ensure

that these regions share information throughout learning.

We should also note that PFC and BG are closely inte-

grated with many other brain regions. For example, the

fast-learning system of the hippocampus is known to be clo-

sely integrated with PFC and the BG and, like many other

brain regions, likely plays a key role in learning and executing

behaviours (for review of interactions between hippocampus

and BG, see [22]). However, here we focus on the close inter-

actions between PFC and BG and how such a relationship

could provide several computational advantages.
6. Learning complex task structures
One outcome of the interaction of different learning styles in

PFC and the BG is that they might work together to capture

complex task structures. Such an idea was recently put forth

in a computational model of task representation by Daw et al.
[23]. In their model, Daw et al. represent complex tasks as a

decision tree: at each state one can choose between one of

many different responses, each of which lead to a new state

(with its own stimuli and response alternatives, figure 2).

And so, behaviour can be modelled as starting at the top-

most ‘node’ in the tree, choosing a response ‘branch’, entering

a new state, choosing another response, and so on until one

has completed the task (hopefully resulting in a reward).

Such decision trees underlie many complex behaviours: an

initial decision defines what decisions are available in the

future. For example, imagine going to work—your initial

decision about whether to check the weather before you

leave will determine later decisions, like whether you

should stop and buy an umbrella when it starts raining.

Daw et al. suggest the flexible associative architecture of

PFC is able to capture the entire tree structure, essentially pro-

viding the animal with an internal model of the entire task.

We propose this representation is due to the combination of

(i) how PFC represents information (in high dimensions and

over sustained time periods) and (ii) the slower DA-driven

learning in PFC (allowing more integrated ‘concepts’ to be

learned). By contrast, Daw et al. suggest BG represents acquired
information with a ‘cache’ system that only learns the most

rewarding alternative at each decision point (i.e. what is the

best branch to take at each state, considered in isolation, with-

out integrating higher order decisions). The BG cache system is

computationally simple (and therefore fast) but it is inflexible

because the learning is divorced from any change in the out-

come. As detailed above, the impact DA has on learning in

the BG may be optimized to learn associations in this way.

If true, then this model suggests the initial learning of a

complex operant task should begin with the establishment

of a simple response immediately proximal to reward (i.e. a

single state seen in figure 2). These ‘simple’ associations are

captured by the striatum. Indeed, lesions of the striatum

impair learning of new operant behaviours (for review,

[24]). More complex tasks, defined as those with more antece-

dents and qualifications (states and alternatives), involve the

PFC to a greater extant. PFC facilitates this learning via its

slower plasticity, allowing it to stitch together the relation-

ships between the different states. This is useful because

uncertainty of the correct action at any given state adds

across the many states within a complex task. Thus, in complex

tasks the ability of reinforcement to control behaviour is les-

sened with the addition of more states. In this situation, the

PFC’s role may be to build a model of the entire task—complete

characterization of how each state relates to another—in order

to facilitate learning and guide behaviour (as seen in figure 2).

Such models allow for deferral of immediately advantageous

states (e.g. S3 in figure 2) for long-term gain (e.g. taking S2 to

get the maximum reward). In support of this theory, disrupting

dorsolateral PFC (via transcranial magnetic stimulation)

decreases a subject’s ability to use complex models to guide

behaviour; instead, subjects tend to choose the immediately

advantageous option [25].

As learning progresses, neural representations of tasks are

thought to change in one of two ways. Many tasks will

remain dependent on the PFC and the models it builds, par-

ticularly those requiring flexibility (e.g. when the goal often

http://rstb.royalsocietypublishing.org/
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changes) or when the current course is incompatible with

a strongly established behaviour (i.e. a habit). However, if a be-

haviour, even a complex one, is unchanging, then the sequence

of appropriate actions can form a new habit. The BG is thought

to capture such habits, likely learning them from the patterns

of activity in PFC. Indeed, inactivating the BG disrupts well-
learned motor behaviours, reflecting its continued importance

in representing behaviours (note that this continued role

for BG is different than the hippocampus, [26]). Further-

more, learning habits requires interactions between PFC and

BG: optogenetic inactivation of these projections prevented

habit formation in a rat trained to run an alternating ‘T’ maze

[27]. However, as noted above, these interactions are not

one-way—activity in BG also acts upon PFC. Next, we dis-

cuss how such a recurrent connection could be a powerful

computational mechanism.
7. Computational role of recurrent cortico-
ganglia loops

Recurrent connections between cortex and BG also ensure

information learned in one region is available in the other.

Just as recursion is a powerful algorithmic approach, the recur-

rent nature of these interactions could serve several different

computational purposes in the brain. Here, we briefly outline

four possibilities:

First, recurrent connections could allow new experiences to

be compared to expectations from previous ones. The resulting

‘difference signal’ allows for the continued re-evaluation of

associations, allowing them to be refined over time. As detailed

above, when this difference is between expected rewards and

reward outcome, it results in the reward prediction error

signal that guides learning. However, the BG may also be acti-

vated when other forms of expectations are violated (such as

perceptual prediction errors, see [28]). By ‘subtracting out’
the expected component of a response, learning can specifically

target the un-expected portion without changing the expec-

ted (and therefore already understood) components. Similar

mechanisms may exist in the cortex [29] and are thought to

rely on inhibition in recurrent connections between cortical

layers [30]. The anatomical structure and interactions of pre-

frontal and BG may play a similar role: the inhibitory

mechanisms within the BG could act to reduce the activity of

expected outcomes.

Second, the loops may allow for sequences of actions (or

thoughts) to be strung together (figure 3). Patterns of activity

in the PFC descend into BG where associated responses

become active. Eventually, this activity leads to the inhibition

of the current state (acting via the indirect pathway and propa-

gating to PFC through the thalamus). This, in turn, facilitates

the activation of the next associated state in PFC, allowing

the animal to prepare for upcoming stimuli, actions, etc.

Owing to the recurrent nature of the connections between

PFC and BG this process can happen iteratively, allowing a

full sequence of actions to be executed in order to achieve a be-

haviour. Consistent with this view, Barnes et al. [31] found that

when a rat learns a task, neurons in the striatum become tran-

siently active at each point of the behavioural sequence (e.g. at

initiation, when expecting a stimulus, at a decision point and at

a reward). This may also underlie the lack of habit formation

when PFC–BG interactions are disrupted [27]: without this

recurrence the sequences needed for complex habits cannot

be generated.

Such iterative sequences may also relate to the oscillatory

rhythms observed in PFC and BG (for more on this, see [32]).

For example, searching a visual array for a target is an itera-

tive two-step process: you attend to an object and determine

whether it is the target. By repeating these steps you will

eventually find the searched-for target. Indeed, neurons in a

sub-region of PFC, the frontal eye fields (FEF), reflect such

an iterative shifting of attention. Interestingly, this iterative

http://rstb.royalsocietypublishing.org/
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allowing for evermore complex functions to be learned (right).
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process was correlated with ongoing beta-band oscillations in

PFC, supporting the hypothesis that sequential behaviour

may elicit oscillation rhythms in the brain [33].

Third, the recurrent loops between the BG and PFC may

support generalization. As noted above, many tasks are learned

piecemeal: first singular experiences (‘exemplars’) are memor-

ized while generalized representations are learned over time.

The recurrent connections between PFC and BG may facilitate

this process. First, the quick-learning in striatum allows for

specific exemplars to be ‘mapped’ to a behavioural response

(figure 4, top). Owing to the recurrent relationship between

BG and PFC, the action association learned by BG can become

part of the representation in PFC (figure 4, bottom). This associ-

ation can now act as a ‘tag’, bringing the representations of

multiple exemplars in PFC ‘closer’ due to their shared associ-

ation. Once tagged in this way, these patterns will be partially

activated during further trials with the same category associ-

ation, helping learning to shape these representations by

finding other commonalities between exemplars.

Finally, the give-and-take in learning between PFC and

BG could support model-building itself: once an association

is learned in one region it becomes available for further learn-

ing in the other. In this way, learning can iterate, allowing for
increasingly complex cognitive representations to be ‘boot-

strapped’ from simpler ones. For example, a well-learned

behaviour can form a habit. Habits have the advantage of

consolidating representations in the brain, reducing the cog-

nitive load of often-repeated behaviours. In addition, habits

can then be used by the executive PFC model-building

system as the basis for further learning.

In a similar way, the ability of PFC to learn new categories

may be used for richer learning of associations in the BG

(figure 5). For example, once the category of ‘hammers’ is

learned, one can instantly generalize associated responses

(e.g. hammering a nail) with a new exemplar of a hammer.

In other words, the stimulus–response association becomes

a more abstract category–response association. Such general-

izations are fundamental to cognitive flexibility, allowing one

to behave appropriately in new situations. In effect, this pro-

cess allows for a concept to be elaborated—new actions and

new outcomes can become associated with already estab-

lished categories. However, elaboration is not necessarily

limited to a single concept: the recurrent nature of prefrontal

and BG interactions may also allow new concepts to be built

from already established ones. This ‘bootstrapping’ process is

seen throughout learning and is a hallmark of human

http://rstb.royalsocietypublishing.org/
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intelligence: we ground new concepts in familiar ones

because it eases our understanding of novel ideas. For example,

we learn to multiply by serial addition and exponentiation by

serial multiplication. Evidence for such ‘higher order’

representations comes from monkeys trained to perform

sequences of movements: while many PFC neurons encoded

individual components of a movement sequence, other neurons

encoded higher order concepts, such as the type of sequence

(e.g. whether it was a sequence of alternating movements or

repeated movements, [34]).
 g
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8. Using learned associations in prefrontal cortex
and basal ganglia to direct behaviour
towards a goal

So far we have detailed how associations between stimuli,

responses and outcomes can be learned in coordination

between PFC and the BG. We then outlined how these comp-

lementary systems may explain different aspects of behaviour.

Furthermore, we have proposed that recurrent interactions

between these systems may provide unique computational

advantages, including producing increasingly complex and

rich behaviours. However, it is important to note that these rep-

resentations are learned in service of behaviour: to allow an

organism to reliably acquire its goals. Using internalized infor-

mation such as this to guide behaviour is often referred to as

‘top-down’ control. Here, we detail the anatomical and physio-

logical characteristics of PFC and BG that allow them to provide

such top-down control.

First, both regions are anatomically well-positioned to

influence neural activity throughout the brain. For example,

PFC is closely integrated with a diverse set of brain regions,

sending and receiving projections from most of the cerebral

cortex. In addition to interacting with other cortical regions,

PFC receives and sends projections to several subcortical

regions, including the hippocampus, amygdala, cerebellum,

and most importantly for our model, the BG [35–40]. Different

PFC subdivisions have distinct patterns of interconnections

with other brain systems (e.g. lateral—sensory and motor

cortex; orbital—limbic), however, all of these sub-regions are

so densely interconnected that any and all information is

quickly integrated across sub-regions [41–43]. As noted

above, the BG is similarly well-integrated, sending and receiv-

ing from most cortical regions. Although these connections do

generally form ‘loops’, connections between nuclei are also

partially convergent, possibly providing a mechanism for inte-

gration across domains. These diverse connections in both

regions may provide the anatomical substrate for top-down

control: allowing them to act as a ‘hub’ of neural processing,

synthesizing a wide range of information (sensory, motor,

emotional, reward, etc.) and then using this knowledge to

influence activity in large swathes of cortex in order to guide

behaviour towards a goal.

In addition to being anatomically well-situated, PFC and

BG neurons show many of the properties necessary for pro-

viding top-down control. First, neurons in both regions

sustain their activity across short, multi-second memory

delays [44–48]. This ‘working memory’ property is crucial

for goal-directed behaviour, which, unlike ‘ballistic’ reflexes,

typically extends over time and allows associations to be

formed between items that are not simultaneously present.
Second, neurons in PFC encode task-relevant information

necessary for top-down, goal-directed control of behaviour.

This includes task-relevant stimulus information [47], as well

as more generalized stimulus information, such as categories

[49] or number of stimuli [50]. In addition, as detailed above,

PFC neurons encode associations between a stimulus and

other stimuli [51] or responses (as detailed above, [1,16]).

Furthermore, neurons in orbital PFC will encode reward expec-

tation and uncertainties, signals that are necessary for guiding

decision-making in complex tasks (for review, see [52]). The

expected outcome following a stimulus and action are also

encoded in PFC (with a bias to different sub-regions for each,

[53]). Finally, neurons in PFC will encode the current context

or situation. Contexts are what capture the contingencies of the

situation (i.e. what ‘tree’ one should be using) and so represent-

ing it is necessary to guide behaviour in a goal-direction fashion.

Consistent with a primary role in top-down control of behaviour,

PFC neurons represent the current context, as well as the ‘rules’

that govern behaviour in that context [54,55]. Recent work

suggests that such contexts are not only represented in single

neurons, but in dynamic ‘ensembles’ of neurons that are defined

by synchrony [56]. Such activity-dependent coupling would

be highly dynamic, facilitating rapid association between

neurons representing stimuli and responses. The speed of

these associations, coupled with the ease to re-form new associ-

ations, makes synchrony an ideal candidate mechanism of

cognitive flexibility.

As detailed above, neurons in PFC and BG are also able to

acquire such task-relevant information quickly [55,57–59].

This may reflect the fact that PFC neurons are selective for

highly complex representations. A recent computational

model argued that PFC neurons have ‘mixed’ selectivity

that ‘randomly’ combine external and internal informations

[60]. This results in high-dimensional, sparse, representations

throughout PFC. The computational advantage of such a

representation is it provides the ability to learn a large

number of new associations (perhaps nearly unlimited),

including those that were not predicted by the previous

structure of the world. Indeed, such mixed selectivity is often

observed in PFC (e.g. [51]). Furthermore, coupling such high-

dimensionality of representations in PFC [61] with the

sustained response of PFC neurons results in an ‘evolution’

of neural signals in PFC: the current representation of an

input depends on previous activity (i.e. the context). This

effect was recently highlighted in a working memory task—

the response of PFC neurons to an always-irrelevant distractor

stimulus depended on the current contents of working

memory (even after neural activity levels had returned to base-

line, [62]). Such constant integration of context is ideal for

top-down control, allowing behaviour to be driven by more

than the immediate world.

Together, this brief review highlights how PFC and BG

are anatomically and physiologically well-positioned to

provide top-down control over neural representations

throughout the brain. Direct evidence for PFC’s role in top-

down control came from a recent study investigating the

control of attention. Attention is a commonly studied form

of goal-directed behaviour: one attends to a stimulus because

it is known to be relevant to the task (and therefore relevant to

receiving a reward). Two competing mechanisms are thought

to control where/when attention is allocated: attention

can be captured in an ‘external’ way by salient stimuli (i.e. a

flashing fire alarm) or can be ‘internally’ directed towards

http://rstb.royalsocietypublishing.org/
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task-relevant stimuli. Simultaneous electrophysiological

recording of neural activity in parietal and PFC revealed neur-

ons in the FEF sub-region of PFC play a primary role in

internally directing attention [63]. Further experiments have

confirmed this activity can directly influence neural activity

in posterior, sensory cortical regions [64]. These results provide

direct evidence that PFC neurons can provide top-down con-

trol of neural activity in a goal-directed manner, guided by

associations learned in collaboration with BG.
.org
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9. Projecting into the future: a proposed neural
mechanism for goal-directed behaviour

So far we have outlined how the associations that underlie

goal-directed behaviour are learned in complementary systems

in PFC and BG. Furthermore, we have provided evidence that

these associations could be used to guide behaviour by biasing

neural representations throughout the brain. But how can this

system be used in a prospective manner? That is, how can

we guide behaviour in heretofore unseen circumstances? We

propose the same recurrent architecture between PFC and

BG that allows for increasingly complex associations to be

formed can be run in a ‘prospective’ way in order to predict
the outcome of possible actions. In other words, the current

state represented in PFC could be passed through the recurrent

loop with BG to generate possible future actions/outcomes.

This output can then be captured in the PFC, possibly in

parallel with the current state (given the capacity of PFC to sim-

ultaneously represent multiple items [65]). Then, if necessary,

the entire process can be repeated, allowing for further

prospection of outcomes.

This ability probably extends to all recurrent architectures

in the brain, allowing previously gained knowledge rep-

resented in each sub-system to be used to predict how the

world should work in the future. For example, prospection

has been seen in the hippocampus: rats will not only think

about portions of the environment that they recently experi-

enced but will also project into parts of the environment

that are in front of them [66]. Similarly, recurrent connections

between PFC and sensory/motor cortex could take advan-

tage of the associations latently learned in these regions.

Indeed, asking a subject to ‘imagine’ a visual scene leads to

activation of visual cortex [67]. We propose the same mechan-

ism likely exists between PFC and BG, except this system is

designed to predict how current actions predict future out-

comes, allowing one to plan a path to one’s goal, even

when that goal has never been experienced.
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