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Abstract

The problem of identifying functional connectivity from mul-
tiple time series data recorded in each of two or more brain
areas arises in many neuroscientific investigations. For a
single stationary time series in each of two brain areas sta-
tistical tools such as cross-correlation and Granger causality
may be applied. On the other hand, to examine multivariate
interactions at a single time point, canonical correlation,
which finds the linear combinations of signals that maximize
the correlation, may be used. We report here a new method
that produces interpretations much like these standard tech-
niques and, in addition, (a) extends the idea of canonical
correlation to 3-way arrays (with dimensionality number of
signals by number of time points by number of trials), (b)
allows for non-stationarity, (c) also allows for nonlinearity,
(d) scales well as the number of signals increases, and (e)
captures predictive relationships, as is done with Granger
causality. We demonstrate the effectiveness of the method
through simulation studies, and illustrate by analyzing local
field potentials recorded from a behaving primate.

New and Noteworthy

Multiple signals recorded from each of multiple brain re-
gions may contain information about cross-region interac-
tions. This article provides a method for visualizing the
complicated interdependencies contained in these signals,
and assessing them statistically. The method combines
signals optimally, but allows the resulting measure of de-
pendence to change, both within and between regions, as
the responses evolve dynamically across time. We demon-
strate the effectiveness of the method through numerical
simulations and by uncovering a novel connectivity pattern
between hippocampus and prefrontal cortex during a declar-
ative memory task.

Introduction

When recordings from multiple electrode arrays are used to
establish functional connectivity across two or more brain
regions, multiple signals within each brain region must be
considered. If, for example, local field potential (LFP) sig-
nals in each of two regions are examined, the problem is
to describe the multivariate relationship between all the
signals from the first region and all the signals from the
second region, as it evolves across time, during a task. One
possibility is to take averages across signals in each region
and then apply cross-correlation or Granger causality (Brov-
elli et al., 2004; Granger, 1969). Alternatively, one might
apply these techniques across all pairs involving one signal
from each of the two regions, and then average the results.
Such averaging, however, may lose important information,
as when only a subset of the time series from one region
correlates well with a subset of time series from the other re-
gion. Furthermore, Granger causality is delicate in the sense
that it can be misleading in some common situations (Wang
et al., 2008; Ding and Wang, 2014; Barnett and Seth, 2011).

We have developed and investigated a new method, which is
descriptive (as opposed to involving generative models such
as auto-regressive processes used in Granger causality), and
is capable of finding subtle multivariate interactions among
signals that are highly non-stationary due to stimulus or
behavioral effects.

Our approach begins with the familiar cross-correlogram,
which is used to understand the correlation of two univariate
signals, including their lead-lag relationship, and generalizes
this in two ways: first, we extend it to a pair of multivariate
signals using the standard multivariate technique known as
canonical correlation analysis (CCA); second, we allow the
correlation structure to evolve dynamically across time. In
addition, we found that a comparatively recent variation
on CCA, known as kernel-CCA (KCCA), provides a more
flexible and computationally efficient framework. We call
the initial CCA-based method dynamic CCA (DCCA) and
the kernel-based version dynamic KCCA (DKCCA).

We assume the signals of interest are recorded across
multiple experimental trials, and the correlations we exam-
ine measure the tendency of signals to vary together across
trials: a positive correlation between two of the signals would
indicate that trials on which the first signal is larger than
average, tend also to be trials on which the second signal
is larger than average. At a single point in time we could
measure the correlation (across trials) between any two sig-
nals. At a single point in time we could also take any linear
combination of signals in one region and correlate it with a
linear combination of signals in the other region; the canoni-
cal correlation is the maximum such correlation among all
possible linear combinations. A technical challenge is to
find a way to compute canonical correlation while taking
into account multiple time points at which the signals are
collected.

In a different context, Lu (2013) proposed time-invariant
weights over both multivariate signals and time points, such
that the resulting vectors are maximally correlated. This
does not solve satisfactorily the problem we face because
it ignores the natural ordering of time and can therefore
produce non-physiological combinations. Another proposal
(Bießmann et al., 2010) applies to individual trials, and
therefore examines correlation across time (as opposed to
correlation across trials), which requires signals that are
stationary (time-invariant), whereas we wish to describe
the dynamic evolution of their correlation across time. Our
DKCCA solution applies KCCA in sliding windows across
time, similarly to the way a spectrogram computes frequency
decompositions in sliding windows across time. After de-
scribing the method, we evaluate DKCCA on simulated
data, where there is ground truth, and show that DKCCA
can recover correlation structure where simpler averaging
methods fail. We then apply DKCCA to data collected
simultaneously from the prefrontal cortex and hippocampus
of a rhesus macaque, and we uncover a novel connectiv-
ity pattern that is not detected by traditional averaging
methods.
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Materials and Methods

In this section, we first review CCA and kernel CCA, and
then describe our algorithms, DCCA and DKCCA, our
artificial-data simulations, and our experimental methods.

CCA

CCA (Hotelling, 1936) provides a natural way to examine
correlation between two sets of N multivariate observations.
The algorithm finds maximally correlated linear combina-
tions of the variables in each set, reducing a multivariate
correlation analysis into several orthogonal univariate anal-
yses. Specifically, given two multivariate, zero mean data
sets X ∈ RN×qx and Y ∈ RN×qy , where qx and qy are the
number of variables in X and Y respectively, CCA seeks to
find canonical weights wX and wY , the coefficients for linear
combinations of the columns of X and Y , respectively, such
that

ρ1 = maxw1
X ,w

1
Y

w1>
X X>Y w1

Y√
w1>
X X>Xw1

X · w1>
Y Y >Y w1

Y

(1)

where ρ1 indicates the first canonical correlation and w1
X , w

1
Y

the first canonical weight pairs. Successive canonical corre-
lations and weight pairs are similarly defined such that

ρp = maxwp
X ,w

p
Y

wp>X X>Y wpY√
wp>X X>XwpX · w

p>
Y Y >Y wpY

(2)

additionally satisfying

corr
(
XwiX , Xw

j
X

)
= 0

corr
(
Y wiY , Y w

j
Y

)
= 0, i 6= j (3)

corr
(
XwiX , Y w

j
Y

)
= 0.

Further, p ≤ min(qx, qy) but often in practice p <<
min(qx, qy). Essentially, each canonical weight pair from
CCA projects the two multivariate sets of N observations
to two univariate sets of N observations, called canonical
components, from which correlation can be obtained in the
usual way.

Kernel CCA

Kernel CCA (Hardoon et al., 2004) extends CCA to allow
for nonlinear combinations of the variables, and it also re-
mains numerically stable while CCA can become unstable
with large numbers of variables. Importantly, even though
kernel CCA applies CCA to a transformation of the data
determined by the nonlinearity of interest, all calculations
can be performed using inner products of the transformed
data matrices. These inner products are defined by a kernel
function and are collected in a matrix often called the kernel
matrix. Because the resulting computations are efficient,
and avoid explicit calculation of the nonlinear transforma-
tions, this is usually called the “kernel trick.” It has been

studied extensively (Christopher, 2016). We next make this
explicit in our context.

Following the example of Hardoon et al. (2004), kernel
CCA maps observations into a “feature space”

φ : x −→ (φ1(x), φ2(x), . . . , φM (x)) (4)

on which CCA is performed. Using the fact that the weights
wφ(X) and wφ(Y ) lie in the row space of φ(X) and φ(Y )
respectively,

wφ(X) = φ(X)>α

wφ(Y ) = φ(Y )>β (5)

and substituting equation 5 into equation 1, we have

ρ1 = maxα1,β1

α>1 φ(X)φ(X)>φ(Y )φ(Y )>β1√√√√α1φ(X)φ(X)>φ(X)φ(X)>α1

·β>1 φ(Y )φ(Y )>φ(Y )φ(Y )>β1

. (6)

Rewriting φ(X)φ(X)> as KX and φ(Y )φ(Y )> as KY , we
can express equation 6 as

ρ1 = maxα1,β1

α>1 KXKY β1√
α1K2

Xα1 · β>1 K2
Y β1

(7)

with successive canonical correlations found as in plain CCA.
The Gram matrices KX and KY require regularization, and
the regularization parameter is typically set using cross-
validation.

Instead of calculating the canonical weights, canonical
components can be calculated directly using

φ(X)w1
φ(X) = KXα1 (8)

φ(Y )w1
φ(Y ) = KY β1.

In this paper we use the linear kernel, which returns
weights that can be interpreted like they are in plain CCA.
Even with the linear kernel, kernel CCA provides benefits
when the number of variables in the data matrices is larger
— in our case, much larger — than the number of observa-
tions. Kernel CCA requires the estimation and use of the
kernel matrices of size N ×N , rather than the much larger
matrices of size qx × qx, qy × qy, and qx × qx. Further, as
we describe below, the Gram matrices used in kernel CCA
permit a decomposition specific to our method that is not
possible with plain CCA, and that allows for substantial
improvement in computational speed.

Dynamic Canonical Correlation Analysis

We first describe DCCA and DKCCA. Then, we show how
to integrate multiple components of CCA analysis into the
DCCA framework, and determine significance of observed
canonical correlations based on a permutation test.

To motivate the problem and our solution, we first de-
scribe the procedure for assessing correlation structure in
the case of two univariate signals. Suppose we have two
simultaneously recorded univariate time series of length T
over N repeated trials collected into matrices X ∈ RN×T
and Y ∈ RN×T . Let X(i, s) and Y (i, t) denote the ith trial
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at times s and t in X and Y , then the the cross-correlation
between times s and t is

cc(s, t) =

∑N
i=1

(
X(i, s)− X̄(s)

)(
Y (i, t)− Ȳ (t)

)√∑N
i=1

(
X(i, s)− X̄(s)

)2∑N
i=1

(
Y (i, t)− Ȳ (t)

)2
(9)

where X̄(s) = 1
N

∑N
i=1X(i, s) and Ȳ (t) = 1

N

∑N
i=1 Y (i, t).

Our goal is to extend this to a multivariate version

ccc(s, t) = maxwX(s,t),wY (s,t)

w>X(s,t)X(s)>Y(t)wY (s,t)√
χ(s, t) · γ(s, t)

(10)

with χ(s, t) = w>X(s,t)X(s)>X(s)wX(s,t)

γ(s, t) = w>Y (s,t)Y(t)>Y(t)wY (s,t).

where arrays X ∈ Rqx×T×N and Y ∈ RqY ×T×N collect the
N multivariate time series of length T of dimensions qx and
qY respectively, and X(s) ∈ RN×qx and Y(t) ∈ RN×qy de-
note slices of arrays X and Y corresponding to times s and
t. The challenge is to identify linear combinations wX(s,t)

and wY (s,t) for all s, t. As mentioned in the introduction, a
natural first thought is to solve for wX(s,t) and wY (s,t) by
using CCA for every pair of times s and t, but this leads
to correlations and weights that are difficult to interpret.
Alternatively we could find fixed wX(s,t) and wY (s,t) for all
s, t, but this does not take into account the nonstationar-
ity of signals in the brain. DCCA, which we now describe,
solves these problems by inferring a single set of weights
that modulate over time without knowing a priori the lagged
correlation structure of the system.

We start by creating extended observations at each
time point that are a concatenation of observations in
a local window of time. Fix local window g, and let
X(s′) ∈ RN×qx·(2g+1) and Y(s′) ∈ RN×qy·(2g+1) be matrices
defined as

X(s′) =
[
X(s− g), X(s− g + 1), . . . , X(s), (11)

. . . , X(s+ g − 1), X(s+ g)
]

Y(s′) =
[
Y (s− g), Y (s− g + 1), . . . , Y (s),

. . . , Y (s+ g − 1), Y (s+ g)
]

where
[
A, . . . Z

]
indicates concatenation of matricesA, . . . , Z

along columns. For each time point s, we run a CCA between
X(s′) and Y(s′), which yields linear combination weights
wX(s′) and wY (s′) of lengths qx · (2g + 1) and qy · (2g + 1)
respectively (see equation 1). Since the CCA is run using
concatenated observations matrices X(s′) and Y(s′), we can

express the concatenated weights as

wX(s′) =



w′X(s−g)
...

w′X(s)

...
w′X(s+g)


∈ Rqx·(2g+1)×1

wY (s′) =



w′Y (s−g)
...

w′Y (s)

...
w′Y (s+g)


∈ Rqy·(2g+1)×1 (12)

where the w′ emphasizes that these weights are not the
same weights that would be obtained from a CCA with
observations that are not concatenated. We then set the
canonical weights for X(s) and Y (s) equal to w′X(s) and

w′Y (s) in equation 12 and calculate matrices Xproj ∈ RN×T

and Y proj ∈ RN×T where

Xproj(s) = X(s)w′X(s) (13)

Y proj(s) = Y (s)w′Y (s)

and the superscript label is used to denote projection. Fi-
nally, we calculate the matrix ccc as in equation 9 using
matrices Xproj and Xproj.

In this approach, exact lagged relationships need not
be established apriori. Instead, if there is a strong lagged
correlation between X and Y at times s and t, then as long
as |s− t| < g, this lagged relationship will be a driving factor
in setting the linear combination weights for both X at time
s and Y at time t (though these will not be set simultane-
ously). Further, the strong correlation between X and Y
at times s and t will drive setting the linear combination
weights at time s′ where 0 < |s′−s| < g and 0 < |s′− t| < g,
instead of wX(s′) and wY (s′) being set to greedily maximize
correlation at time s′.

Extended observations are the key to discovering a priori
unknown lagged cross-correlation, as they make observations
within the specified local window visible to each other. To
see this, if array X has observations that are independent
of each other across time, and Y is a shifted copy of X, so
Y(t) = X(t− k), then without creating extended observa-
tions, this procedure would only return false correlations
since in the shifted case the instantaneous observations are
independent (and hence uncorrelated) by design. Recovery
of the actual lagged correlation without extended observa-
tions would require knowledge of the true lag, which in the
above example would be k.

While DCCA with CCA might work well in some scenar-
ios, as described above it has some disadvantages. First, in
many cases, qx ·(2g+1) >> N and qy ·(2g+1) >> N , which
causes numerical instability. Second, as a result of forming
concatenated matrices X(s′) and Y(s′), we must estimate a
covariance matrix for all observation pairs X(s) and X(t),
Y (s) and Y (t), and X(s) and Y (t) for |s − t| < 2g + 1.
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Finally, for inference involving trial permutations or boot-
strapping, these covariance matrices must be recalculated
for each simulated dataset.

The first and third problems are well understood from the
literature, and the solution is to use kernel CCA (KCCA)
instead of CCA. In the next section, we describe DCCA
with KCCA and show that not only is KCCA a solution
to the first and third problems with respect to the DCCA
procedure, but also the second. Further, KCCA allows for
nonlinear combinations over signals.

Dynamic Kernel Canonical Correlation Analysis

In theory, DKCCA proceeds as described above, but with
KCCA instead of CCA. Observations are concatenated over
a local window of time, s−g to s+g, and kernel matrices are
computed from these concatenated observations. Weights for
the concatenated observations (see equation 12) are derived
according to equation 5, from which the weights at time s
are extracted and matrices Xproj and Y proj are created as
in equation 13.

As indicated in equation 7, the KCCA algorithm finds
optimal α(s) and β(s), which from equation 5 we can inter-
pret as coefficients for the linear combinations over the N
replications in X(s) and Y (s) respectively (see, for instance,
Hardoon et al. (2004) for details). Because the concatenated
observation matrix X((s+ 1)′) contains all the observations
in the matrix X(s′) with the exception of one, and likewise
for matrices Y((s+ 1)′) and Y(s′), α(s) and β(s) modulate
smoothly over time in the DKCCA procedure. As a con-
sequence, using equation 5, we have that wX(s) and wY (s)

evolve smoothly over time as well. Note that the degree of
smoothness depends on the smoothness of the original time
series.

Calculating the canonical weights in equation 5, while in-
formative in many scientific settings, is not strictly necessary.
In cases where the focus lies solely on the temporal lagged
correlations, Xproj(s) and Y proj(s) in equation 13 can be
calculated directly using equation 8. This is especially useful
when φ maps observations into high-dimensional or infinite-
dimensional space, where the weights become difficult to
interpret. Calculating Xproj(s) and Y proj(s) directly allows
for a wide range of nonlinear combinations of the time series
to be considered with low computational cost.

In addition to extending CCA to nonlinear combina-
tions, KCCA allows for numerical stability when the number
of signals multiplied by concatenated time points is larger
than the number of trials. Also, bootstrap and permutation
testing procedures are much faster with KCCA, since they
amount to selection or permutation of the rows and columns
of the kernel matrices. Further, KCCA solves the second
problem mentioned above, that of needing to estimate a
covariance matrix for all observation pairs X(s) and X(t),
Y (s) and Y (t), and X(s) and Y (t) for |s− t| < 2g+ 1 under
DCCA with CCA. Focusing for now on the case where φ is
the identity map, we calculate the kernel matrix from equa-
tion 7, KX(s′) ∈ RN×N , as KX(s′) = X(s′)X>(s′) (likewise
with the kernel matrix KY (s′)). This calculation can be

decomposed as

KX(s′) = KX(s− g) + . . .+KX(s) + . . .+KX(s+ g)
(14)

and since in equation 7 only KX and KY need to be com-
puted (whereas in CCA the cross-covariance terms between
X and Y must be computed), then for each time point
s, KX(s) and KY (s) need be computed only once, with
KX(s′) and KY (s′) computed as the sum of the relevant ker-
nel matrices. For arbitrary φ, the decomposition in equation
14 does not necessarily hold, as interactions between time
points are potentially allowed to occur. To take advantage
of the decomposition, we can impose a constraint on φ that
allows for nonlinearities across time series dimensions, but
not across time.

Incorporating multiple components

Typically in CCA-based methods, it suffices to describe
the procedure using only the first canonical correlation, as
canonical correlations associated with components p ≥ 2 can
be studied independently, or can be added to get the total
canonical correlation over all components. This is because
the canonical components satisfy the constraints in equation
3. However, in DKCCA, we don’t have these guarantees.
While the constraints in equation 3 do apply to the canoni-
cal weights calculated from the concatenated observations
(equation 12), they do not apply to the canonical componets
Xproj(s) and Y proj(s) in equation 13 as these are derived
from extracted weights. As an analogy, a set of orthogonal
bases over the interval (0, 1) are not necessarily orthogonal
when restricted to an arbitrary interval (a, b) ⊂ (0, 1). In
order to incorporate canonical correlations across multiple
components in DKCCA, we therefore cannot add the ccc
matrices calculated from each component.

We now describe a way of combining the top k corre-
lations between components at times s and t in X and
Y , respectively. Let wiX(s) and wiY (s) be the ith canoni-
cal weights for X and Y at time s, and similarly to equa-
tion 13, for i = 1 . . . k, let Xproj

i (s) = X(s)wiX(s) and

Y proj
i (t) = Y (t)wiY (t) be the k components for X(s) and

Y (t). Then,

1. Set γ1 = corr(Xproj
1 (s), Y proj

1 (t)).

2. Decompose Xproj
2 (s) and Y proj

2 (t) into a projection

onto Xproj
1 (s) and Y proj

1 (t), respectively, and the asso-
ciated residual:

X⊥2 (s) =
Xproj

2 (s)>Xproj
1 (s)

||Xproj
1 (s)||2

Xproj
1 (s) (15)

Xresid
2 (s) = Xproj

2 (s)−X⊥2 (s) (16)

Y ⊥2 (t) =
Y proj
2 (t)>Y proj

1 (t)

||Y proj
1 (t)||2

Y proj
1 (t) (17)

Y resid
2 (t) = Y proj

2 (t)− Y ⊥2 (t). (18)
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3. Set

γ2 =

cov
(
Xresid

2 (s), Y resid
2 (t)

)
+ cov

(
Xresid

2 (s), Y ⊥2 (t)
)

+ cov
(
X⊥2 (s), Y resid

2 (t)
)√

var
(
Xproj

2 (s)
)√

var
(
Y proj
2 (t)

) .

(19)

This is almost cov
(
Xproj

2 (s), Y proj
2 (t)

)
, however

we have removed the covariance component
cov
(
X⊥2 (s), Y ⊥2 (t)

)
, as this is redundant. Importantly,

we still allow for correlations across components, where
strict orthogonalization would not.

4. For the ith canonical components, decompose Xproj
i (s)

into a projection onto the subspace spanned by com-
ponents {Xproj

1 (s), . . . , Xproj
i−1 (s)} and its orthogonal

residual, and Y proj
i (t) into a projection onto the sub-

space spanned by components {Y proj
1 (t), . . . , Y proj

i−1 (s)}
and the orthogonal residual. Calculate γi as in step 3.

5. Finally, set TC(s, t) =
∑k
i=1 γi.

This procedure has the nice property that if it were per-
formed on output from a vanilla CCA, for canonical correla-
tions ρi, we have that γi = ρi.

Identifying significant regions of cross-correlation

We generate a null distribution for cross-correlations be-
tween regions with a permutation test, combined with an
excursion test. We create B new data sets by randomly
permuting the order of the trials of Y , rerunning DKCCA
on each of the permuted data sets. This results in matrices
ccc∗i for i ∈ 1 : B. For each entry (s, t), we have B sampled
correlations ccc∗i (s, t) from the null distribution, and say
that point (s, t) is αpw(s, t) − significant if its correlation
value is greater than 1− αpw percent of the B sampled cor-
relations. As mentioned above, the relevant kernel matrices
need not be recalculated for each permuted data set. Only
the order of the rows and columns of kernel matrices KY (s)
are affected.

Because we are interested in broad temporal regions of
correlated activity, and not isolated time point pairs, we use
the B data sets from the permutation test to perform an
excursion test (see Xu et al. (2011)). We say that two αpw

significant points (s, t) and (s′, t′), with either s 6= s′, t 6= t′,
or both, belong to the same contiguous region if there exists a
connected path between them such that each point along the
path is also αpw significant. To perform the excursion test,
we identify contiguous regions in the ccc∗i matrices, and for
each contiguous region Cmi

i with mi ∈ [1 . . .Mi] where Mi

is the number of contiguous regions in the ith bootstrapped
dataset, we record the sum of the excess correlation above
the αpw cutoff values,

k(i,mi) =
∑

(s,t)∈Cmi
i

ccc∗i (s, t)− αpw(s, t). (20)

The collection {k(i,mi) : i ∈ [1 . . . B],mi ∈ [1 . . .Mi]} de-
fines a null distribution over the total excess correlation for
contiguous regions, from which an αregion-level cutoff value
can be calculated. We consider as significant any contigu-
ous regions Cm whose total excess correlation exceeds the
αregion-level cutoff value.

Simulations

We ran several simulation scenarios to evaluate the effective-
ness of the DKCCA procedure1. Each scenario simulated an
experiment with two multivariate time series of dimensions
96 and 16, with 100 repeated time-locked trials. Each time
series for each trial was generated from a two-dimensional
latent variable model

X(t) = A(t)H(t) + ε(t) (21)

where H(t) ∈ R2 is the latent trajectory with the first and
second components uncorrelated, and A(t) ∈ Rq×2 (where
q = 96 for time series 1 and q = 16 for time series 2) is a
mapping from the latent variable to the signal space, and
ε(t) is a noise term. H(t) and ε(t) were both resampled for
each trial, while A(t) was fixed across trials, though as is
clear by the notation, was allowed to vary across time. We
refer to the collection of A(t) for all t as the A-operator.

We introduced correlation between time series 1 and 2
through the first latent dimension for each time series. Let
H1

1 and H1
2 be the sample paths of the first latent dimension

for time series 1 and 2, respectively. Further, let ρ(k) be
a “ramp function” that is piecewise linear with ρ(0) = 0,
ramps up to a plateau where it stays for a length of time,
then returns to 0. Then starting at time s and for desired
lag l,

H1
2 (s+ k) = ρ(k)H1

1 (s+ k − l) + (1− ρ(k))H1
2 (s+ k).

(22)

While we kept lag l fixed across trials, we allowed the in-
duced correlation starting time s to vary uniformly within
10 time steps in order to simulate small differences in the
time-course of brain signals with respect to the time-locked
stimulus.

We sampled each latent trajectory of H for each time se-
ries, and the trajectories for each entry in the time-dynamic
A-operators for each time series, as zero mean Gaussian
processes with covariance kernels of the form

Σ(i, j) = σ2 exp

(
−.5 ∗

(
i− j
λ

)2
)
. (23)

Let A1 be the A-operator for time series 1 and A2 the A-
operator time series 2. For A1, A2, H1, and H2, we let
σ = 1 in equation 23. For H1 and H2 we let λ be 40 and 20,
respectively, and for A1 and A2 we set λ = 100.

Finally, ε(t) for each time series is simulated as a two-
dimensional latent state model as in equation 21 in or-
der to control spatial-dependence and long-range temporal-
dependence in the noise. For each Aε-operator (where the

1Code for the DKCCA algorithm and this simulation is provided at https://github.com/jrodu/DKCCA.git
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subscript emphasizes that it is used to simulate the noise
terms ε(t)), we let σ = 1 and λ = 30 in equation 23. For Hε

we let λ = 80 and, across various simulation conditions on
the signal to noise ratio, fix σnoise = σ in equation 23 to be
between 0.2 and 2.

Experimental Methods

The experiment consisted of the presentation of one of four
cue objects, each mapped to one of two associated objects. A
rhesus macaque was required to fixate on a white center dot,
after which one of the four object cues was shown, followed a
correct or incorrect associated object. A correct object pre-
sentation required an immediate saccade to a target, while
an incorrect object presentation required a delay until a
correct object was presented. The presentations of fixation,
object cue, and associated objects were separated by blank
intervals. Multi-electrode recordings were made from both
Hippocampus (HPC) and lateral prefrontal cortex (PFC) in
order to examine the roles of HPC and PFC in non-spatial
declarative memory.

Each day over 1000 trials were conducted. Electrodes
were daily re-implanted into the macaque brain, hence the
exact location, and number, of electrodes in the HPC and
PFC varied from day to day. For the analysis of the DKCCA
algorithm we only considered days in which there were at
least 8 electrodes in each section, with typical numbers being
between 8 and 20 per brain region. The sampling rate for
each trial was 1000Hz. For further details on the experimen-
tal setup and data collection, see Brincat and Miller (2016).
All procedures followed the guidelines of the MIT Animal
Care and Use Committee and the US National Institutes of
Health. We expand upon details relevant to analysis of the
DKCCA algorithm here.

Past work has shown that for multielectrode recordings
such as LFP and EEG, the use of a common pickup and
the presence of volume conduction can adversely affect func-
tional connectivity analysis. See, for example, the work
of Bastos and Schoffelen (2016) and Trongnetrpunya et al.
(2016) for a description of the problem and steps that can
be taken to mitigate the effect. These same issues impact
DKCCA, especially when the instantaneous correlation of
the contaminating signal is almost as strong as or stronger
than the lagged correlation of interest, and we recommend
following the guidance proposed by past work. For the cur-
rent data, to minimize pickup of any specific signals through
the reference, collection was made using a common reference
via a low-impedance connection to animal ground.

For the analyses reported here, we filtered each trial
using a Morlet wavelet centered around 16 Hz, where this
frequency was determined from previous studies. It is critical
in correlation based analyses to isolate the frequency band
of interest, and 16 Hz was chosen for this analysis because
it is in this region (the beta band) that we see the strongest
LFP power and coherence effects (see Brincat and Miller
(2016) for details). Finally, we downsampled the signal to
200Hz.

Results

The goal of DKCCA was to extend dynamic cross-correlation
analysis to two multivariate time series with repeated tri-
als. The algorithm infers a linear or nonlinear combinations
over the signal dimensions that (a) are interpretable, (b)
are allowed to change over time, and (c) do not require
prior knowledge of the lagged correlation structure. Be-
cause it uses sliding windows, the combinations can adapt
to the underlying nonstationarity of the brain regions and
their interactions. DKCCA can thereby recover correlation
structure where averaging methods fail. In this section,
we evaluate DKCCA on both simulated and real data. In
simulations, we show that DKCCA is able to recover the un-
derlying correlation structure between two highly dynamic
multivariate time series under varying noise conditions, and
simulate a realistic example where DKCCA recovers the
correlation structure but averaging methods do not. In the
real data, DKCCA detected a novel cross-correlation while
the averaging methods did not.

DKCCA analysis of simulated data

To illustrate DKCCA’s ability to recover dynamic cross
correlation from two multivariate signals, we ran several
simulations (see equations 21, 22, and 23) under varying
noise conditions, with lag l = 20 and simulation start time
s sampled for each trial uniformly between min = 310 and
max = 320. We designed our simulations to verify three im-
portant properties of the algorithm: (a) that it can recover
cross-correlation between highly dynamic time series, (b)
that it is robust against spurious correlation, and (c) that it
can recover cross-correlation in adversarial conditions, where
averaging methods fail. We subsequently illustrate these
properties in our analysis of the real data.

Despite the highly dynamic nature of the simulated time
series, DKCCA correctly identifies the temporal region in
which lagged correlation exists, and indicates no correla-
tion outside of that region. Fig. 1 shows the raw cross-
correlograms for various noise levels generated from one
such set of simulations. Fig. 2 shows the cross-correlograms
after accounting for the inference step. The magnitude dis-
played is excess pairwise canonical correlation after inference.
As noise increases, cross-area correlated multivariate signals
are more difficult to find, but DKCCA is successful even in
high noise regimes. Further, our simulations suggest that
the method is robust to finding spurious correlations, since
in Figs. 1 and 2 almost no cross-correlation is indicated
outside of the regions of induced correlation.

To see this more directly, we ran simulations with no
cross-correlation structure, again under varying noise con-
ditions. Results are in Fig 3. For all analyses, we set our
window size parameter, g, to be 20.

To asses DKCCA’s recovery of the correct lag, we com-
puted a standard cross correlogram from the ccc matrix
generated by the DKCCA algorithm by averaging the lagged
correlations of one region with respect to the other, within
the time period of induced lagged correlation. The results in
Fig. 4 show that our algorithm correctly recovers the loca-
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tion of the maximal correlation at a lag of 20. As is expected
the accuracy of the method decreases as the signal-to-noise
ratio decreases.

Finally we compared the performance of DKCCA to
two common methods, averaging the pairwise correlations
between signals (APC) and taking the correlation between
the average of signals in each region (CAS). Figure 5 shows
the results of the comparison with the same simulation
setup as before, but with signal present in only a portion
of the simulated electrodes. We achieved this by permuting
the remaining electrodes across trials, thereby leaving the
temporal characteristics of each electrode intact, but break-
ing their dependence with other electrodes in a given trial.
While APC and CAS do not capture the simulated correla-
tion structure, DKCCA does capture the correct correlation
dynamics.

DKCCA analysis of LFPs from PFC and
HPC

We applied DKCCA to analyze local field potential (LFP)
data from the paired-association task described in the Ex-
perimental Methods section. In the experiment, a cue was
presented, followed by a series of objects, one of which had
a learned association with the cue. A rhesus macaque was
required to make a saccade to a target following the display
of the correct associated object, and a reward was provided
as feedback following a correct saccade. In the original study,
Brincat and Miller (2015) concentrated their analysis on the
feedback period of each trial. We focused our analysis on
the period between the initial presentation of the cue object
and the appearance of the first potential associated object.
In this portion of the experiment, Brincat and Miller (2015)
showed there was high power in a band around 16Hz in
both HPC and PFC, and that, broadly, signal in HPC led
the signal in PFC (HPC → PFC). In our analysis we (a)
verify that DKCCA also identified that, broadly, HPC →
PFC, and (b) compare DKCCA to standard averaging meth-
ods to show that DKCCA is better able to detect nuanced
cross-correlation. In addition to (a) and (b), our analysis
uncovered an interesting reversal in the lead-lag relationship
between HPC and PFC that was not found by traditional
averaging methods.

In our analysis we used a block of 200 trials, and a total
sliding window size of 21 (g=10) time steps, or 105ms. We
used kernels generated by setting φ to be the identity map.
The first column of Fig. 6 shows the result of DKCCA gen-
erated from a representative set of trials. The figure shows
both the ccc matrix for the full trial length (top panel)
as well as the ccc matrix zoomed in to the time period
corresponding to the portion of the trial between the pre-
sentation of the cue and the presentation of the associated
pair (bottom panel). In the full trial, DKCCA shows strong
correlation before the presentation of the cue (time -.5s to
0s), and during the presentation of the cue (time 0s to .5s).
Lag time varies throughout the interval before and during
presentation of the cue, but generally suggests that HPC
leads PFC. Correlation is weaker and more intermittent
between the presentation of the cue and the presentation of

the associated pair, with a noticeable temporary increase
in correlation just before the associated pair presentation.
While not as distinct as during and just before cue presen-
tation, correlation during the associated pair presentation
(timing 1.25s to 1.75s) is persistent. Although neither APC
nor CAS show significant lagged activity in the time period
between the presentation of the cue and the presentation
of the associated pair, the zoomed cross-correlogram for
DKCCA shows a burst of correlation just after time=1s,
and in particular suggests that PFC leads HPC in that time
period. The effect is significant in the magnitude of the
excursion with p << .001.

The highly significant correlation between PFC and HPC
found by DKCCA in the bottom left panel of Fig. 6 ap-
pears to be asymmetric about the diagonal. We found the
point of maximal cross correlation to occur when PFC leads
HPC by approximately 65ms, as marked with a red cross in
that figure. The within-task timing of a switch in lead-lag
relationship from HPC → PFC to PFC → HPC would be
roughly consistent with the timing of the lead-lag switch
found in Place et al. (2016), who studied the theta band in
rats. However, with our descriptive method we are unable to
provide a statistical test of the lead-lag relationship. We also
do not contribute to the as of yet inconclusive discussion of
why the theta band is predominant in hippocampal-cortical
interaction in rodents, while beta is predominant in pri-
mates. But despite the difference in frequencies, in both rats
and primates, interactions with HPC → PFC directionality
seem to be prominent early in trials, during the prepara-
tory and cue presentation periods, but switch to PFC →
HPC directionality near the time period when the cue is
eliciting memory retrieval. This suggests (in both situations)
that PFC may be involved in guiding memory retrieval in
the HPC. This figure confirms on real data that DKCCA
can effectively recover cross-correlation, and that it has the
power to detect subtle changes in the lead-lag relationship
between time series, such as the reversal seen between object
presentations.

We next compare the results of DKCCA to results from
APC. In Fig. 6, DKCCA reports a much richer correlation
structure throughout the trial than does APC. There are two
places in particular where APC differs from DKCCA: first
in the period before the presentation of the cue (time -.5s
to 0s), and second between the presentation of the cue and
the associated pair (time .5s to 1.25s), where APC indicates
that correlation disappears between HPC and PFC. The
reason is that with APC there is a single set of weights used
when combining the pairwise cross-correlations, regardless
of the temporal location of those cross correlations in the
trial. However, because of the dynamic nature of the brain,
signal pairs do not contribute to population-level correlation
activity in a consistent manner over time. In Fig. 6, even
where APC does indicate correlation, it does not capture the
optimal correlation structure. DKCCA, on the other hand,
accommodates these changing dynamics by modulating the
weights of the signals over time.

CAS has comparable performance to APC. In particular,
the CAS method is unable to fully capture the dynamic
cross-correlation structure both before the presentation of
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the cue and between the presentation of the cue and the pre-
sentation of the associated pair. APC and CAS both treat
all signals with the same weight, which does not optimize for,
and therefore potentially misses, dynamic cross-correlation
between the two regions.

Discussion

In this paper we derived and studied a pair of descriptive
methods for assessing dynamic cross-correlation between
two multivariate time series. DCCA extends canonical corre-
lation analysis to three-way arrays indexed by signals, time,
and trials, where the canonical weights over signals are al-
lowed to evolve slowly over time. Because it is based on
sliding windows, DCCA accommodates nonstationary time
series while avoiding strong assumptions on the dynamics of
the lagged correlation over time. We prefer to use the kernel-
ized variant, DKCCA because it scales well with a growing
number of signals, incorporates nonlinear combinations, and
provides computational efficiencies not available in DCCA.

Even though nonlinear kernels might provide powerful
results, they are difficult to interpret. In our analyses, we
have used the linear kernel, which yields weights that are
interpreted identically to those in CCA while providing more
stable and efficient computation.

DKCCA requires a few parameters to be set, or inferred.
The first is a regularization parameter used in implement-
ing KCCA. In one run of the DKCCA algorithm, KCCA is
called multiple times, and in order to allow for comparisons
between different entries in the ccc matrix, it is important to
use a single regularization value for all KCCA calls. In our
experiments, we set this global regularization value through
cross-validation. The second parameter is the half-window
size g. This value should be set according to scientific con-
text, though there are a few considerations to take into
account. A large g heavily smooths the kernel matrices over
time. This leads to a slow evolution of α(s) and β(s) in
equation 7 and could possibly obscure the non-stationary
characteristic of the time series. On the other hand, small g
might miss important lagged-correlation structure. In this
paper, we did not explore optimizing g in the absence of
intuition about the maximal lag of interest. We leave this
for future work.

We also suggest a possible method for computational sav-
ings when the time series under consideration are long and
prohibit DKCCA (or DCCA) from running in the desired
amount of time. As presented in this paper, the algorithms
set the weights for a single time point for each window of
the sliding window. Instead, weights for j time points can
be set per window. We advise that j should be much smaller
than the length of the window, 2g + 1, in order to ensure
the smoothness of weights over time. For the analyses in
this paper, we set j = 1.

We validated DKCCA on both simulated and real data,
comparing the results to methods commonly used to compute
cross-correlation. On simulated data, DKCCA successfully
captured the dynamic cross-correlation structure, even under
adversarial conditions where traditional methods failed. On

real data, in addition to showing more intricate dynamics
where traditional methods also captured some correlation,
DKCCA found cross-correlation where those methods did
not, suggesting a switch in the lead-lag relationship between
the hippocampus (HPC) and prefrontal cortex (PFC) in the
rhesus macaque.

Signals captured from the brain are highly dynamic, de-
manding new statistical tools to characterize them. DKCCA
provides one such tool to describe dynamic cross-correlation.
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Figure 1: DKCCA captures lagged correlation across a variety of noise levels. Representative results for running DKCCA
on simulated data with σnoise = .2, .6, 1, 1.2, 1.4 and 2 (left to right, top to bottom). y-axis is time (ms) in section X, x-axis
is time (ms) in section Y . Trial length: 500ms. True lag of 20ms begins in each trial between 300 and 310 in section Y
(280 and 290 in section X) and lasts about 80ms. DKCCA recovers the true correlation structure well even for relatively
small signal to noise ratio.

Figure 2: Excursion test for DKCCA correctly identifies significant regions of cross-correlation. Representative results after
bootstrap and excursion test for trials from simulations with σnoise = .2, .6, 1, 1.2, 1.4 and 2 (left to right, top to bottom).
y-axis is time (ms) in section X, x-axis is time (ms) in section Y . Trial length: 500ms. True lag of 20ms begins in each
trial between 300 and 310 in section Y (280 and 290 in section X) and lasts about 80ms. Nonzero values are excess above
cutoff. Zero values indicate time-pair correlation that was at cutoff or below.

Figure 3: Excursion test for DKCCA avoids identifying spurious cross-correlation. Representative results for running
DKCCA on simulated data with σnoise = .2, .6, 1, 1.2, 1.4 and 2 (left to right, top to bottom). y-axis is time (ms) in section
X, x-axis is time (ms) in section Y . Trial length: 500ms. No true lead-lag relationships present.

Figure 4: DKCCA accurately identifies the correct lag length. Each grey line is the averaged lagged correlation of area of
interest for trials from simulations (10 simulations for each noise level) with σnoise = .2, .6, 1, 1.2, 1.4 and 2. Lag τ = 20 is
indicated with a vertical line.

Figure 5: DKCCA identifies the correct region of interest where other methods fail. Comparison of DKCCA, APC, and
CAS on simulated data with signal present in only a portion of the electrodes. DKCCA correctly identifies signal, as above.
APC and CAS are unable to identify signal. Note that intensity is not comparable across methods as all correlations in
APC and CAS are comparatively small, so correlations have been scaled for visual presentation.

Figure 6: DKCCA finds lagged cross-correlation where traditional methods fail. Top left: cross-correlogram created by the
DKCCA algorithm on full trial from -.75 seconds to about 1.75 seconds. The small red and green boxes show timing of
display of cue and associated pairs, respectively. Bottom left: cross-correlogram from trial zoomed in to the period between
the end of the cue presentation (time = .5 seconds) and the beginning of the associated pair presentation (time = 1.25
seconds), as indicated by the large red box on the full cross-correlogram. The red diagonal line shows time in HPC = time
in PFC, and the red cross in the bottom left panel indicates the location of the maximum cross correlation in the excursion
of interest. Results based on DKCCA are contrasted to the cross-correlogram and zoomed cross-correlogram created by
averaging the absolute value of the pairwise cross-correlograms (APC, middle column) and those created by averaging the
signals prior to calculating the cross-correlogram (CAS, right column). In both APC and CAS, we do not see any activity
in the zoomed cross-correlograms. For display purposes, correlation magnitudes are not comparable between DKCCA,
APC, and CAS as APC and CAS cross-correlations tend to be small compared to the DKCCA, so they have been rescaled.
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