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Abstract

213 words out of 250 maximum.

In addition to the prefrontal cortex (PFC), the basal ganglia (BG) have been increasingly often reported
to play a fundamental role in category learning, but the systems-level circuits of how both interact remain
to be explored. We developed a novel neuro-computational model of category learning that particularly
addresses the BG-PFC interplay. We propose that the BG bias PFC activity by removing the inhibition
of cortico-thalamo-cortical loop and thereby provide a teaching signal to guide the acquisition of category
representations in the cortico-cortical associations to the PFC. Our model replicates key behavioral and
physiological data of macaque monkey learning a prototype distortion task from Antzoulatos and Miller
(2011). Our simulations allowed us to gain a deeper insight into the observed drop of category selectivity
in striatal neurons seen in the experimental data and in the model. The simulation results and a new
analysis of the experimental data, based on the model’s predictions, show that the drop in category
selectivity of the striatum emerges as the variability of responses in the striatum rises when confronting
the BG with an increasingly larger number of stimuli to be classified. The neuro-computational model
therefore provides new testable insights of systems-level brain circuits involved in category learning which

may also be generalized to better understand other cortico-basal ganglia-cortical loops.
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Significance Statement

119 words out of 120 maximum.

Inspired by the idea that basal ganglia (BG) teach the prefrontal cortex (PFC) to acquire category
representations, we developed a novel neuro-computational model and tested it on a task that was recently
applied in monkey experiments. As an advantage over previous models of category learning, our model
allows to compare simulation data with single cell recordings in PFC and BG. We not only derived model
predictions, but already verified a prediction to explain the observed drop in striatal category selectivity.
When testing our model with a simple real-world face categorization task, we observed that the fast
striatal learning with a performance of 85% correct responses can teach slower PFC learning to push the

model performance up to almost 100%.

Introduction

591 words out of 650

The world is composed of an overwhelming number of different objects and variants of those objects.
Category formation is the ability to extract commonalities among these diverse objects, allowing us to
group experiences by concepts or categories, and therefore imbuing our world with meaning. Furthermore,
we can generalize, and hence classify, stimuli we have never seen before into a category, a property also

fundamental for the emergence of language.

At least two brain areas are involved in category learning: the basal ganglia (BG) and the prefrontal
cortex (PFC) (Seger and Miller, 2010). The BG have been shown to participate in a wide range of
categorization tasks, particularly those that require implicit learning via trial and error (Merchant et al.,
1997; Poldrack et al., 1999, 2001; Seger and Cincotta, 2005; Nomura et al., 2007; Cincotta and Seger,
2007; Zeithamova et al., 2008). The PFC, in contrast, appears to hold category knowledge. Freedman
et al. (2001, 2002, 2003) found PFC neurons that became preferably activated by stimuli of a particular
category. Also, PFC cells are known to represent abstract rule-based categories (Wallis et al., 2001; Wallis
and Miller, 2003; Muhammad et al., 2006; Antzoulatos and Miller, 2016).

Some studies have suggested that the BG may train the PFC to slowly learn categories (Pasupathy and

Miller, 2005; Miller and Buschman, 2008; Seger and Miller, 2010; Antzoulatos and Miller, 2011; Hélie et
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al., 2015). Antzoulatos and Miller (2011) carried out an experiment in which monkeys were trained to
classify a large number of different abstract stimuli composed of several dots into two possible categories.
While monkeys learned this task, neurons from the PFC and the striatum were recorded. Early in this
experiment, when there were just a few stimuli to classify, category selectivity was strong in the striatum,
but weak in the PFC. As the task advanced, the number of possible stimuli to classify increased and the

category selectivity became weak in the striatum and strong in the PFC (Antzoulatos and Miller, 2011).

The fact that the striatum predicted categories better in the beginning of the experiment and the PFC
later led Antzoulatos and Miller (2011) to suggest that the BG teach the PFC to encode categories.
However, there is no obvious explanation for the observed decrease in striatal category selectivity. Further,
the exact relationship between BG and PFC during category formation, e.g. the systems-level circuits

that allow the BG to teach the PFC are not yet fully worked out.

To study these open questions, we here developed a neuro-computational model and had it learn the
experiment devised by Antzoulatos and Miller (2011). Our simulations suggest that although the striatal
cells decrease on average their category selectivity, they typically remain selective enough to contribute
to the final category decision: the knowledge acquired by the striatal cells can be very specific but
also associated to several stimuli of the same category. Furthermore, our simulations predict that the
striatal category selectivity decrease is due to an increase in the variability in the striatum cells’ category
response, i.e. the striatal cells only respond to a subset of stimuli of one category as well as to some
stimuli of the other category. We supported this prediction by re-analyzing the original experimental

data of Antzoulatos and Miller (2011).

In addition to the task used by Antzoulatos and Miller (2011), the model was tested on a task in which
real-world face images had to be classified. This study revealed that even an imperfect teacher (the BG)

can still train the PFC to push the model’s classification performance up to almost 100%.
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Methodology

Model Description
Overview

Our model comprises an open cortico-basalganglio-thalamic (CBGT) loop that interacts with a cortico-
cortical-thalamo-cortical pathway to acquire category information and to produce category decisions.
The two cortical areas involved are the Inferior Temporal cortex (IT) and the PFC (see Figure 1); the IT
encodes stimulus information and the PFC learns to encode category knowledge. The BG bias activity in
PFC such that Hebbian learning of the IT - PFC connectivity is sufficient to develop category selective
cells in PFC.

In this rate coding model, the membrane potential of all simulated neurons and the learning rules that

determine synaptic plasticity between neighboring neurons are controlled by differential equations.
The BG

Our BG model is based on previous work (Schroll et al., 2014, 2015) , and contains three basal ganglia
pathways (Schroll and Hamker, 2013): the direct (striatum — substantia nigra pars reticulata), hyperdi-
rect (subthalamic nucleus — substantia nigra pars reticulata), and short indirect pathway (striatum —
external globus pallidus — substantia nigra pars reticulata). Each of these three BG pathways obtains
the input information from the IT and converges in the substantia nigra pars reticulata (SNr), a BG

nucleus that tonically inhibits the ventral anterior nucleus (VA) of the thalamus.

The function of each BG pathway emerges as a learning process, implemented via a three factor learning
rule which considers the pre-synaptic activity, the post-synaptic activity and a dopamine (DA) signal. In
our model, this DA signal estimates a reward prediction error based on the striatal activity at the time

of reward delivery.

In the direct pathway, learning occurs in the projections between the IT and the striatal D1 cells and
between the striatal D1 cells and the SNr. Associations between neurons in these connections become
strengthened with dopamine burts and weakened with dopamine dips as motivated by experimental data
(Shen et al., 2008; Fisher et al., 2017). Consequently, this pathway learns to select a patch of VA neurons

that are linked with the correct category decision, in agreement with the well-known GO-function of this
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BG pathway (Nambu et al., 2002; O’Reilly and Frank, 2006; Braak and Del Tredici, 2008; Schroll and
Hamker, 2013).

In the hyperdirect pathway, learning occurs in the connections between the IT and the STN and between
the STN and the SNr. Associations between neurons in these connections are also strengthened with
dopamine peaks and weakened with dopamine dips (Kreiss et al., 1996; Schroll et al., 2012). Particularly,
this pathway learns to suppress VA cells that encode currently unrewarded responses. Thus, both the
direct and hyperdirect pathways work together to facilitate the selection of the correct category decision,

in agreement with the well-known center-surround structure (Nambu et al., 2002).

In the indirect pathway, learning takes place in the projections between the IT and the striatal D2 cells
and between the striatal D2 cells and GPe. In contrast to the other two BG pathways, but consistent with
biological evidence (Surmeier et al., 2007; Shen et al., 2008; Fisher et al., 2017), associations between cells
of this pathway become strengthened with dopamine dips and weakened with dopamine peaks. Therefore,
this pathway learns to suppress VA cells linked to an incorrect category decision, in accordance with the
well-documented NO-GO-function of this BG pathway (Apicella et al., 1992; Mink, 1996). This pathway

is particularly relevant if changes in the stimulus-response associations occur.

A specific connectivity pattern is not forced on any of these plastic projections, providing our model
with high flexibility. Connections are initialized in an all to all configuration with random low weights.
The connectivity pattern is then automatically shaped through plasticity. On many previous modeling
approaches of the BG a connectivity pattern with parallel channels (one for each action or here category)
was enforced, without any clear account on how this arrangement could develop. Plasticity was therefore
required only on early stages of the different pathways. An interesting feature of having plasticity in the
late stages is that the knowledge acquired in the early stages of the pathways can be kept when learning

a new task, allowing relearning to be faster than the initial learning as shown by Schroll et al. (2012).

The basal ganglia-cortex interaction

Our model includes a cortico-thalamo-cortical pathway which allows the BG to teach category knowledge
to the cortico-cortical pathway from IT to PFC by biasing thalamic and thus, PFC activity. Once the
category knowledge in the PFC is established, the PFC can also contribute to the final category decision
by means of the cortico-thalamo-cortical pathway. Thus, the thalamus plays a key role in integrating the

category decisions produced by both the BG and the PFC.
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Category information is learned in the cortico-cortical connections between the IT and the PFC by an
unsupervised Hebbian learning rule (please refer to the discussion regarding the assumption of unsuper-
vised learning). As the BG disinhibits the thalamus, BG will bias PFC activation, which in turn guides
(dopamine-free) Hebbian learning in the IT-PFC connections. The PFC cells in our model slowly learn
over a large number of stimuli to extract category representations, in agreement with ideas suggesting that
slow learning in the cortex is required to develop category representations in the PFC (Seger and Miller,
2010). Evidence has been found for the existence of Hebbian plasticity in cortico-cortical long-range

connections (Sjostrom et al., 2001; Koch et al., 2013).

Experimental design and statistical analysis

Prototype distortion task

In the experiment carried out by Antzoulatos and Miller (2011), two female monkeys performed a pro-
totype distortion task in which they learned to classify stimuli into one of two different categories. We

here re-analysed data from this previous experiment as explained later.

We tested our model with a very similar version of the original experiment as follows. Each stimulus was
composed of 7 white small squares (7 x 7 pixels each) drawn on black background within an image of
140x140 pixels. Each stimulus belonged either to category A or B and was generated from the underlying
category’s prototype by shifting the seven squares from the prototype’s coordinates randomly into nearby
locations (Figure 2a). To mimic early visual processing up to area IT, we preprocessed the images using
Gaussian receptive fields (RFs) with a standard deviation of 10 pixels (cut-off at 3.5 standard deviations
which equals a diameter of 35 pixels), and a sampling distance between RF centers of 15 pixels (1.5

standard deviations of RF size).

The set of stimuli used in each experimental run consisted of 170 stimuli per category (each generated
from its category’s prototype image) and was distributed into 8 blocks, where the stimulus set increased
in size with each block: in each block n the set size was 2", equally balanced for each category. In the
first block, therefore, only two different stimuli were presented. In the second block two more stimuli were
added to the set, reaching a total of 4. In subsequent blocks, only the stimuli added in the last block were
kept and new stimuli were incorporated until a total of 2" was reached. Figure 2b illustrates the exact

procedure. Each new block began only when 16 out of the last 20 trials were successfully performed,
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identical to the original experiment.

Because we aimed to focus on category learning only and did not model any eye-movement or working
memory components involved in the original animal task, we simplified the trial design by omitting the
delay period and the oculomotor response. At the beginning of each trial, a stimulus was randomly drawn
from the set of the current block and presented to the model for 550 ms. After 50 ms we determined the

model’s decision using a softmax rule on a set of output neurons:

]31': 7“1'-'1-09 (1)

(Ciiams) +6
where P; is the probability of choosing category i, r; is the rate of the output neuron associated to
category i, N is the number of categories, and # = 10~7 prevents from dividing by zero. The output
neurons read our model’s decision from the thalamic activity. Although 50 ms is a short time period,
it is large enough for the model to reach a stable response to the presented stimulus. Data show that
monkeys can make a decision between 25-50 ms if visual and motor latency are not considered (Stanford

et al., 2010).

In the case of a correct response, dopaminergic SNc cells were excited for 500 ms, simulating the delivery
of reward (reward period). To meaningfully compare our model’s results with data from monkeys, we
ran a very large number of experimental runs (100000) each with different initial synaptic weights and
with slightly different values of 64 model parameters (see the mathematical model description). For each
experimental run, a different set of stimuli was chosen among 100 possible sets of stimuli (each generated

from two different category prototypes).

Model susceptibility to parameter variation

To study the susceptibility of our model to modest changes in model value parameters, we computed
the correlation between the model performance and each of the 64 parameters modified in the 100000
experimental runs. Each of these correlations was computed with the Pearson correlation coefficient
(PCC), employing the corrcoef numpy function, and considering 100000 data pairs, each made up of the
model performance and the parameter value (or the absolute value of the distance between the parameter
value and the mean parameter value, for a second version of the PCC) from a different experimental run.

The model performance at each experimental run was evaluated by computing the average of correct
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trials in the last 16 trials of the experimental run.

Category selectivity

In order to compare our model with the neurophysiological findings reported by Antzoulatos and Miller
(2011), category selectivity was measured from model neurons’ activity during the display of novel stimuli
in correct trials, as previously done by the authors of the physiological experiment. As with the exper-
imental data, category selectivity was computed within a trial-time window (size of 10 trials and 7 ms)
moving in trial and time space (trial step size of 1 trial and a time step size of 3 ms). Trial-time windows

with less than two trials associated to one category were discarded. The d’ sensitivity index

‘N’A — ,uB| (2)

d'(pa, pB,04,08) =
(M BB ’ ) 0% (na—1)40%-(nb—1)
na+nb+2

was computed for each cell within each window, where p4 and o4 are the mean and standard deviation,

respectively, of the cell’s firing rates recorded in trials where stimuli of category A were presented, pp and
op are the mean and standard deviation of the firing rates recorded in trials where stimuli of category
B were presented, and na and nb are the number of trials in the corresponding window that relate to
stimuli of category A and B, respectively. In the striatum, we only considered cells of the direct (Go-)
pathway as these cells are mainly responsible for selection while cells in the indirect (No-Go-) pathway

are responsible for suppression (Schroll et al., 2014).

Stimulus selectivity and category selectivity per cell

To study if cells in PFC and STR become stimulus selective rather than category selective, we applied
the following procedure. At the end of each block, learning was frozen and each stimulus seen so far in
the experiment was presented once to the model for 50 ms, followed by a period of 100 ms without a
stimulus. The response of a cell to each presented stimulus was computed by averaging the cell’s activity

over 50 ms presentation time and normalized by its maximum response to all stimuli within a block.

We defined a stimulus selectivity index (SIstim) which measures if a cell is particularly tuned to a single

stimulus compared to the rest of the stimuli belonging to the same category:
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where s is a presented stimulus, S is the set of presented stimuli, R, is the cell’s response to s, and R is
the mean cell’s response to those stimuli in S that are different from s and belong to the same category

as s.

Category selectivity (Slcat) was measured by computing the absolute value of the difference between
the cell’s mean response to stimuli of one category and the cell’s mean response to stimuli of the other

category (i.e. the numerator of the d’ sensitivity index).

Sleat = |Ra — Rp| (4)

where R4 is the mean cell’s response to the stimuli that belong to category A, Rp is the mean cell’s

response to the stimuli that belong to category B.

We did not compute the full d’ sensitivity index because we wanted the stimulus selectivity and the
category selectivity to be plotted in the same scale. Therefore, the category selectivity was normalized

in the same way as the stimulus selectivity (via normalizing the responses of each cell).

Only experiments that learned to criterion (in each block 16 out of 20 consecutive trials have to be
correctly classified before the maximum number of trials determined in each block is reached) were

considered for the analysis.

Face categorization task

To test the model’s performance in a real-world classification scenario, we created an additional face
categorization task. Face pictures of George W. Bush and Bill Clinton were extracted from videos and

presented to the model for classification purposes.

All videos were taken from the YouTube Faces Database (Wolf et al., 2011), which consists of 3425 videos
of 1595 different people, downloaded from Youtube and manually annotated. The shortest clip duration
was 48 frames, the longest clip consisted of 6,070 frames, and the average length of a video clip was 181.3

frames. For Bill Clinton, we obtained 4 videos with a total of 851 frames and for George W. Bush, we
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obtained 5 videos with a total of 820 frames.

For each frame, the face region was detected using a Viola-Jones filter (Viola and Jones, 2004), allowing
to extract and resize each face to a 100x100 grayscale image. Figure 3 shows a few examples of the

resulting face images.

To obtain high-level facial features that mimic the computation in visual areas, we trained a neural net-
work using the keras library (https://keras.io/) and the Theano backend (http://deeplearning.net/softwar
e/theano/). The training set consisted of all the images obtained from the YouTube Faces Database ex-
cept those of George W. Bush and Bill Clinton, providing us with 619455 input images of 1593 people
(labels).

The neural network starts with a single convolutional layer, extracting 16 filters of size 6x6 and using
a rectified linear transfer function (ReLU). It is followed by a max-pooling layer over 2x2 units and a
dropout layer with p = 0.5. This layer feeds a fully connected layer (100 neurons, ReLU transfer function

and dropout 0.5) which itself feeds a softmax layer with 1593 neurons (one per label).

The network was trained by minimizing the categorical cross-entropy between the true labels and the
predictions using the Stochastic Gradient Descent (SGD) method, with mini-batches of 100 samples, an
initial learning rate of 0.01 decaying by 1076 in each epoch, and a Nesterov momentum of 0.9. After 100
epochs, the network obtained an accuracy of 99.2% on a test set composed of 61945 randomly selected
samples (10% of the whole data, not used for training). Finally, the high-level facial features for category
learning of Bush and Clinton images were extracted by taking the neural activation prior to the last

softmax layer.

Mathematical model description

The neuro-computational model was implemented using the ANNarchy neural simulator (Vitay et al.,
2015) version 3.0. The forward Euler method had been used to numerically solve these differential
equations with a time step of 1 ms. Figure 4 shows our model’ architecture with more detail than in
Figure 1 by illustrating the number of cells in each neural population, all the connections in the model,

and the type of these connections.
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The IT

IT is composed of 100 neurons whose membrane potentials are computed by:

dmIT (t)
T - —2— + m]I-T(t) =5 (5)
dt
where m]I-T is the membrane potential of the neuron j; 7, = 10 ms is the time constant; and S; is the

part of the preprocessed image that this neuron receives. The firing rate T‘7I~T(t) is calculated by applying
()* to the membrane potential, where () is a function that takes the positive part of its argument (all

negative arguments are transformed to 0)
The BG

The BG model is based on the one by Schroll et al. (2014). We again briefly describe the model and

highlight the changes we implemented.

The membrane potential of all cells in the BG is defined by a leaky-integration equation:

T - dmd—"t(t) Fmit)= Y I - > I+ B +e(t) (6)

pre€N. pre€N,
where m; is the membrane potential of neuron j, 7, = 10 ms the time constant, B; the baseline of the
cell’s membrane potential (2.4 for the SNr, 1.0 for the GPe and 0.4 for the other nuclei), €;(t) is random
noise sampled from a uniform distribution in the interval [-1.0 , 1.0] for the GPe and SNr, and [-0.1 ,
0.1] for the other nuclei; IP"¢ the input from the presynaptic neural population to neuron j, N, the set
of presynaptic neural populations with inhibitory synapses to neuron j, and N, the set of presynaptic

neural populations with excitatory synapses to neuron j.

The inputs are computed as:

P Pr
Ifrew) = Y wiyorf (7
i€Pre
where w; ;(t) is the weight of the synapse between the presynaptic neuron ¢ and the postsynaptic neuron

Pre
i

j, and r; "¢(t) is the firing rate of the presynaptic cell 7.

Equation 7 is used to compute the impact of all the connections in our model except for the case of the

10
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SNr lateral connections. The model includes plasticity in connections from the striatum and the STN
to the SNr. Although uncommon, this approach gives the model a high level of flexibility as it doesn’t
force a particular connectivity pattern but lets the network develop it by itself. Unfortunately, except
of the striatum, little is known about neural plasticity in the BG. As reviewed by Schroll and Hamker
(2013) not only the striatum, but other nuclei are innervated by axons of dopamine neurons. Further,
administration of the dopamine precursor levodopa has been shown to affect synaptic plasticity in SNr
(Prescott et al., 2008). Dopamine dependent plasticity in our model SNr avoids that striatal cells are
hard wired to one category in the SNr — an approach necessary for previous models of BG, which are
hard wired from striatum to thalamus. Further, learning requires competition between cells, otherwise
all neurons would learn similar features. To implement competition in the SNr, the impact of the SNr

laterals is computed by multiplying the synaptic weights by a reversal factor (1 — r7¢(t))*:

i

ey = 3" w1 —rfre)t el ®)

i€Pre

where the synaptic weights of the lateral connections in the SNr are excitatory and fixed to 1. There is no
direct evidence for our assumed SNr circuitry, mainly due to a lack of studies, but our assumption agrees
with data showing that activations of the direct pathway cells in the striatum can elicit both excitation
and inhibition of SNr neurons (Freeze et al., 2013; Hikosaka et al., 1993). Lateral connections in the

striatum D1 (StrD1), striatum D2 (StrD2) and STN are inhibitory and set to 0.3.

SNc follows an equation that produces the dopamine signal and is the only part of our network that is
not governed by equation 6:

dmfN (t)

ot miNe(t) = (1= R)- (=10~ I}"PL(t)) + R- (1 — Bpa — I7"PY ()" + Bpa  (9)

T -
where Bpa = 0.1 is the baseline of the cell’s membrane potential. I ]‘S”D L(t) is the impact from the
connections of all StrD1 cells to the SN¢ which learn to represent the reward prediction at the time
of the reward delivery. R is a term that changes depending on whether reward is delivered (set to 1)
or omitted (set to 0). The dopamine signal is only computed during the reward presentation period
and it encodes a reward prediction error at the time of the reward delivery using D1 striatal neurons
activity for the prediction, as these cells have been reported to be part of the pathway that project to the

dopaminergic neurons, see Vitay and Hamker (2014) for a more detailed model of the reward prediction
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error computation.

The firing rate of all cells in our model is calculated by applying ()™ to the membrane potential. The
learning rule to update the synaptic weights from the IT cells to the 16 StrD1 cells, 16 StrD2 cells and
16 STN cells is:

deT—POST (t

= = fpa(DA(t) = Bpa) - C = af P57 (t) - ({57 (1) = 77O (£)F)®  (10)

Tw " j

dt
with C being the covariance term:
C = (") =" () = vpre) - (r] 05T (8) = 7PO5T (1)) F (11)

fpa(z) a function that determines how dopamine influences learning (where T; = 1 for cells in the direct

and hyperdirect pathway and Ty = —1 for cells in the indirect pathway):

(Td~2~.’L‘) lf(Td‘L)>0

fpalz) =9 (T;-08-a) if (Ty-2)<0U(T,-C)>0 (12)
0 else
and «a; the adaptive normalization variable (T, = 1 for excitatory connections and T, = —1 for inhibitory
connections):
daPOST +
JT() + afOST(t) _ (Tc my (f) o m/MAX)Jr (13)

Where 7,, = 75 ms is the time constant. Synapses are randomly initialized with a uniform distribution

in the interval [0.0 , 0.3].

With dopamine peaks, very active StrD1 and STN cells will strengthen their connections with the active
IT cells and weaken their connections with the rest of IT cells. With dopamine dips, the connections
between very active StrD1 and STN cells and active IT cells weaken. The dopamine learning effect is
reversed in the projections from IT to StrD2 cells. Thus, with dopamine dips, the most active StrD2
cells will strengthen their connections with the active IT cells and weaken their connections with the rest

of IT cells. With dopamine peaks, the connections between very active StrD2 cells and active IT cells

12
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weaken.

The covariance term C depends on the following parameters and variables: the firing rate of the post-

synaptic cell rf OST(#); the mean of the firing rates in the postsynaptic layer 77957 (t); a threshold

T

Ypre = 0.15; the firing rate of the IT neuron 77 (t); and the mean firing rate in the IT layer 77 (t).

fpa(z) depends on the dopamine level DA(t) and the dopamine baseline Bps = 0.1.

The subtractive term of the right hand side of equation 10 serves to saturate the synaptic weights of a
cell so that the cell’s firing rate is also bound. Equation 13 shows that af OST depends on the membrane

potential of the postsynaptic cell (m;(t)); and a threshold (mMAX = 1).

The learning rule for changing the connection from the StrD1 to the SNr, from StrD2 to GPe cells, and
from STN to SNr cells is:

dw! FE-POST t)

i+ e = [pA(DA®) ~ Bpa) - (=C) — a5 (1) ()" (14)
with the covariance term:
C="T. () =7 HE @) - (=rf 5T () + 77T (t) = vpost) (15)

fpa(zx): the variable that determines how dopamine influences learning via Equation 12; and «;: the

adaptive normalization variable computed via Equation 13.

where 7, = 50 ms is the time constant. Synapses are randomly initialized by values taken from a uniform

distribution in the interval [0.0 , 0.05].

The additive term on the left side of equation 14 ensures that during peaks of dopamine, the most active
StrD1 cells will strengthen their connections with the less active SNr cell and weaken their connections
with the other SNr cell; and the most active STN cells will strengthen their connections with the most
active SNr cell and weaken their connections with the other SNr cell. With dopamine dips, the most
active StrD1 cells will weaken their connections with the less active SNr cell and the most active STN

cells will strengthen their connections with the less active SNr cell.

13
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In the case of the StrD2-GPe projections, the dopamine learning effect is the opposite of the dopamine
effect in the StrD1-SNr projections. Then with dopamine dips, the most active StrD2 cells will strengthen
their connections with the less active GPe cell and weaken their connections with the other GPe cell.
With dopamine peaks, most active StrD2 cells will weaken their connections with the less active GPe

cell.

C depends on the following parameters and variables: a threshold v,,ss = 0.15, the firing rate of the

PRE
J

=PRE

presynaptic neuron r (), the mean of the firing rates in the presynaptic layer 7 (t), the firing rate

POST

POST
j (t).

of the postsynaptic cell r (t), and the mean of the firing rates in the postsynaptic layer 7

The threshold of af OST js mMAX — 1 for the StrD1-SNr connections, m™4X = 2.6 for the STN-SNr
connections, and mMAX = 2 for the StrD2-GPe connections. The SNr and GPe also receive thalamic
feedback which is provided by direct connections from the VA to a sub-population of striatal cells (StrThal
in Figure 4), that in turn project to both the GPe and the SNr. These projections help to stabilize the
BG decision by enhancing the inhibition of the selected category in the SNr. This stabilization allows to
reliably notify the BG pathways which category decision should be reinforced when a dopamine peak is
generated (Brown et al., 2004). The connections from the StrThal to the SNr and GPe are set to 0.3,

from the VA to the StrThal to 1, and the lateral connections in StrThal to 0.3.

The connections from the StrD1 cells to the SNc¢ cell are updated by equations 16 and 17:

det_rlech (t

Tw s " =gpa- (DA() = Bpa) - (771 (8) =7 PH(1) T (16)

with
1 if reward
9gpA = (17)
3 if no reward
where 7, = 100000 ms is the time constant; Tf”Dl(t) is the firing rate of the neuron j in the StrD1 layer;
7 DL(#) is the mean of the firing rates in the StrD1 layer; gpa is a parameter that scales the effect

of dopamine dips and peaks in learning; DA(t) is the dopamine level; and Bpy is the baseline of the

dopamine level. Consequently, peaks in dopamine will strengthen the connections between the SNc cell

14
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and the most active StrD1 cells and dips will weaken these connections.

Finally, we summarize the difference between our model and the one by Schroll et al. (2014). As our
examples required only two categories to learn, our SNr and GPe are composed of two cells instead of four.
As a result, the synaptic values of the SNr lateral connections are fixed to 1.0 instead of being plastic.
The synaptic values of the plastic connections in the model are randomly initialized from a uniform
distribution; instead, Schroll et al. (2014) initialized these synaptic weights to zero. The projections
from the IT to the BG input nuclei are only excitatory in our model. In contrast, Schroll et al. (2014)
allowed these synaptic weights to switch their character between excitatory and inhibitory during learning.
Learning in the present model does not rely on calcium traces implemented in the previous model as they
are not required for the purpose of this study. The learning rules from the IT to the BG input nuclei
have been slightly changed (in the subtractive term of the learning rules). Finally, the time constant of
the IT membrane potential, the m™4X for the STN-SNr connections and the fixed weights of wSN"—V4

were modified.

The cortico-thalamic architecture

The membrane potential m; of the 2 VA and the 16 PFC cells is computed by the equations 6 and 7,
with a time constant of 10 ms; the random noise is generated from a uniform distribution in the interval
[-0.05 , 0.05] for the PFC and in [-0.0001 , 0.0001] for the VA; and the baseline is 0 for both populations.

The firing rate is calculated by applying ()™ to the membrane potential.

The connectivity between PFC and VA is fixed and ensures that a PFC cell can only obtain its input

from a single VA cell to avoid any overlapp. The number of PFC cells connected to a VA cell is balanced

VA—-PFC wPFC—VA PFC—-PFC
)

equally. The weight values are defined as follows: w and w are fixed with

IT-PFC

values 0.35, 0.15, and 0.1 respectively. w are randomly initialized with a uniform distribution in

the interval [0.2 , 0.4] and modified by the following learning rule:

du#T—PFC(ﬂ

Tw - ”T = ({7 () =TT () = pre) - (rFFE(t) = FPFC ()T
—af O - ((r]FC ) =P ) wl ) (18)
where 7,, = 15000 ms; 7, = 0.15, and oef F C(t) is the variable that contributes to the dynamic synaptic
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saturation (eq. 13), with threshold m™4X = 3.5.

In the most active PFC cells, the synapse will be strengthened if the presynaptic cell’s firing rate is above
the population mean and will be weakened otherwise. The subtractive term on the right side of equation

18 ensures dynamic synaptic saturation as in the Oja’s learning rule (Oja, 1982).

Variation of 64 model parameters

Each of the 100000 simulations was performed with different values for 64 model parameters. The value
of each of these parameters was randomly selected from an uniform distribution in the interval between
plus/minus 10% of the parameter’s value previously specified in the mathematical model description.
The 64 model parameters are: the membrane potential’s baseline for the different neural populations, the
membrane potential’s noise for the different populations, the time constant of the different learning rules,
the mMAX of each learning rule, the Ypre of each learning rule, the scaling factor for dopamine peaks and
the scaling factor for dopamine dips in the fpa(z) of each projection, the scaling factor for the reward
prediction signal when reward is not delivered, the value of gp4 when reward is not delivered, and the

synaptic weights of the different fixed connections.

Results

Simulation Results

To meaningfully compare our model’s results with physiological and biological data and, at the same
time, test the robustness of our model, we ran 100000 category learning experiments each with randomly
generated initial synaptic weights and with randomly generated values for 64 model parameters. Each
of these parameters’ values was randomly determined from a uniform distribution in an interval between
plus/minus 10% of its value specified in the method’s section (base value). With a total of 100000 of
these experimental runs, we consider a large number of variations for the 64 model value parameters.
Further, we used some variability in the learning task by choosing for each experimental run a different

set of stimuli among 100 possible sets of stimuli, each generated from two different category prototypes.

An experiment was considered successful when, within 65 trials per block, 16 out of 20 consecutive

trials were correct in each block. The model successfully executed 82639 out of 100000 experiments

16
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(82.639%), a proportion slightly better than that of monkeys (Antzoulatos and Miller, 2011): 19 out of
24 (79.166%). Further, the model showed a similar learning performance across the paradigm than that
of monkeys (Figure 5): initially, the model randomly selected a category (50% correct performance); the
performance gradually improved from the first block to the fourth block; and from the fifth block on, the

performance saturated at around 96.5%.

The Pearson correlation coefficient (PCC) between each of the 64 parameters and the model’s performance
(computed for each experimental run as the percentage of correct trials in the 16 last trials) is very low:
between —0.035 and 0.041, indicating that the model tolerates modest changes in any of the specified
model value parameters. When the PCC considered the absolute values of the perturbations produced in
each parameter base value instead of the values of each parameter, correlations are even smaller: between

—0.01 and 0.01.

Importantly, our model reproduced the key neurophysiological findings of Antzoulatos and Miller (2011):
at the beginning of the paradigm, striatal cells were strongly category selective and PFC cells were weakly
category selective, while later on, PFC cells became highly category selective and striatal cells weakly

category selective (Figure 6).

In the following, we use the model as a tool to better understand this key finding. When we analyse each
cell’s category and stimulus selectivity over 100 simulations (with fixed model parameters) we see that
PFC and striatal cells show a different selectivity profile (Figure 7). Throughout the paradigm, there were
striatal cells that were stimulus selective and striatal cells that were category selective, indicating that
striatal cells encode both, specific and abstract knowledge. Importantly, this result shows that, although
the striatum d’ sensitivity is reduced late in the experiment, there are striatal cells involved in category
learning throughout the whole experiment. PFC cells, in contrast, increased their category selectivity
across blocks while their stimulus selectivity remained low throughout the paradigm, supporting that

these cells encode generalized, categorical knowledge.

Three example striatal cells illustrate different response characteristics to stimuli of both categories (Fig-
ure 8). The first cell exclusively responds to stimuli of one category throughout the experiment, but from
block IV onwards, it does not respond to all stimuli of its preferred category. Thus, its category responses
become more variable within the set of stimuli of the preferred category. The second cell switches its
category selectivity. Furthermore, the variability of this cell’s category response is higher in the last

blocks than in the first blocks. A third cell responds to stimuli of one category in the first blocks, but

17
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becomes selective to stimuli of the other category in the later blocks as well. Therefore, this cell loses its

category selectivity and appears to become selective to input patterns common to both categories.

When we analyse the response characteristics across all cells, we observe that the distance between the
mean response to the preferred category pup and the mean response to the non-preferred category py
reduces after the first phase, due to a reduction in pp and a small increase in py (Figure 9a). However, the
mean response to the preferred category stays much higher than the one to the non-preferred category in
all three different phases of the experiment, showing that striatal cells have on average a clearly preferred
category throughout the experiment. Thus, a cell responding to both categories (see Figure 8) is not the

typical case.

The increase in the standard deviation of the response to the preferred category op and the standard
deviation of the response to the non-preferred category oy (Figure 9b) confirms our observations of the
example cells in that the striatal response to category information becomes more variable after the first

phase of the experiment.

As these results suggest that the decrease in pup — pn is due to an increase in the variability of the
category response, our model predicts that the decrease of the d’ sensitivity index is primarily the result

of an increase in the variability of the category response.

We next explored why the decrease in striatal category selectivity and the accompanying increase in
variability occurred. As a first hypothesis, we reasoned that - as PFC category selectivity increased
with learning - striatal category selectivity became less required for successful task performance and was
therefore unlearned as the neural activity in the striatum may not be the cause of the final decision. To
test this hypothesis, we ran 100 additional simulations with our model, but we now blocked learning in
the PFC so that the BG were performing the experiment alone. However, the striatal d’ sensitivity index
abruptly decreased after the first phase and stayed at a low level in the next two phases, qualitatively
very similar to the full model, therefore, ruling out that the decrease in striatal category selectivity occurs

due to a PFC dominance in later blocks.

As another hypothesis, we tested whether, as task performance increased, dopamine peaks (i.e., positive
reward prediction errors) in the model stopped appearing - which would have impaired further learning
in the striatum. However, dopamine peaks were only reduced to 43% on average, enough to still produce

large synaptic changes in the striatum.
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Next, we tested whether the increase of the variability in the striatal category response and therefore the
decrease of the striatal category selectivity is produced by the learning of a large diversity of stimuli. To
test this idea, we ran 100 simulations with the full model performing a new prototype distortion task in
which the diversity of exposed stimuli is large and constant from the beginning of the task. Rather than
subdividing the prototype distortion task into blocks with increasing numbers of stimuli across blocks,
any stimulus from the whole repertoire of stimuli available per experiment could be presented in each
trial. We now observe a low striatal category selectivity from the beginning of the experiment (Figure
10) and no drop in the selectivity index. Since PFC category selectivity rises to high values, the BG
still teach PFC cells to develop category representations, indicating that the BG are involved in the
categorization task. Consequently, this result supports that the decrease in the d’ sensitivity index is
due to the fast learning of a large diversity of exposed stimuli, which makes it impossible for the striatal
cells to acquire complete category representations and to respond to all stimuli of the preferred category.
Thus, the fact that the d’ sensitivity index in this revised experiment is low from the beginning, discards
a PFC dominance in the category decision and an omission of dopamine peaks as reasons for the low

striatal category selectivity, since both effects occur later in the experiment.

To further explore BG and PFC interactions, we compared the performance of the full model with the
performance of the BG and the PFC alone in a slightly more challenging, real world category learning
task. In each of the 2500 trials of this task, an image randomly selected from 1671 images of Bill
Clinton and George W. Bush (extracted from Youtube videos and therefore varying in perspective and
facial expressions) was presented to the model for classification purposes. In order to mimic early visual
perception up to area IT, we used a convolutional network trained on other faces to transform each image
into a 100 dimensional vector representing the high-level facial features of the corresponding image (see
Methods). In order to adapt the model to these new inputs, two small changes were implemented. First,
slower learning in the PFC (7, = 100000 ms) was required to guarantee that the common patterns among
inputs of a category were extracted. Secondly, the pre-synaptic threshold in the PFC learning rule was
set to Ypre=0.0 to ensure that all relevant features of the input space were learned. Surprisingly, the BG
model alone achieves a much weaker performance than the full model and the PFC alone (Figure 11).
The BG and the full model very soon reached 85%. While the full model slowly improved its performance,
finally achieving a level of 97.4%, the BG alone lack further improvement and their performance fluctuates
around 85%. The performance of the PFC alone, with a 95.6% of correct responses after the training

of the full model, is only 1.8% lower than the full model’s performance. Thus, with a difference in
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performance between the full model and the BG alone of around 12.2% and a difference in performance
between the PFC alone and the BG alone of around 10.4%, we can corroborate the relevant role of the
PFC in pushing the categorization performance to high levels with complex input stimuli. We have also

found that Hebbian learning alone is not enough to reach a high performance on the task.

To ensure that the slow learning in the PFC is key for pushing the categorization performance of the
full model above the BG categorization performance, we compared the categorization performance of five
full model configurations each with different learning speed in the PFC. Categorization performance was
here evaluated across 100 runs on the category learning task of faces. Figure 12 illustrates that the full
model’s performance increases as the speed in the PFC learning rule decreases, confirming the principal

role of the slow learning in the PFC for achieving high categorization performance.

To study if the slow learning alone can be sufficient, we ran the BG alone with slow learning in an
additional region of the striatum. However, the BG with slow learning reach a significantly lower per-
formance (around 17.4% lower) than the full model (Figure 13). Also, to study the effect of additional
basal-ganglio-cortical connections seen in vivo, we added to our model the well-known connection from
the PFC to the STR (Ferry et al., 2000). Figure 13 shows that this version of the model does not alter
the performance previously achieved by our full model, indicating that this connection does not have a

relevant effect on the simulated task.

Physiological results

Even though the striatum d’ sensitivity index abruptly decreases after the first phase, our model predicts
that on average, the striatal cells remain selective for a preferred category, but their response to category
information becomes more variable (Figure 9). To empirically test these predictions, we went back to the
original monkey data. In accordance with our simulation results, the monkey data shows that the mean
response to the preferred category pp weakly decreases after the first phase and that the mean response to
the non-preferred category un slightly increases after the first phase (Figure 14a). Most importantly, up
is significantly higher than py in the three phases, confirming that although the striatum d’ sensitivity
index shows a large decrease, the striatal cells show a preferred categorical response in the course of the

experiment.

In agreement with our model, the monkey data shows that both the variability of the striatal response
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to the preferred category op and the variability of the striatal response to the non-preferred category oy

increases after the first phase, while op is higher than oy (Figure 14b).

Discussion

977 words out of 1500.

We introduced a new neuro-computational model of category learning to investigate interactions of basal
ganglia and PFC. While it is known that the PFC receives a dopaminergic input, though less than
the striatum (Seger and Miller, 2010), its phasic properties are less pronounced due to the very slow
decay of DA in PFC as reviewed by Lapish et al. (2007). Lapish et al. (2007) suggested that the co-
release of glutamate from DA neurons may serve as a temporally precise signal to allow PFC neurons to
switch between different modes that affect local network dynamics. However, how such DA dependent
states may subserve reinforcement learning of cortico-cortical connections has not been discussed. Thus,
we took the conservative assumption that cortico-cortical connections follow a Hebbian learning rule.
Hebbian learning however, is insufficient for categorizing complex input stimuli at high performance
levels. Therefore, the PFC requires teaching signals to guide learning towards useful representations
at an intermediate level between perception and action. We here explored the hypothesis that the BG
modulate the cortico-thalamo-cortical loop and thus provide the PFC with the required task related
information. Unlike the mesocortical DAergic signal, the BG teaching signal provides no reward related
information to the PFC. It supplies the PFC with a desired response for the current input as estimated by
the BG. Interestingly, the ‘teacher’ can display a much lower performance than the ‘student’ (Figure 11).
Due to the slow learning of the cortico-cortical connections (here IT-PFC), occasionally wrong decisions
transferred by the BG are tolerated. The BG with 85% correct performance still teach the PFC to push
the model’s performance up to almost 100%. Potential benefits of combined fast and slow learners have
been laid out in the context of memory consolidation based on models of the cortex and hippocampus
(McClelland et al., 1995; O'Reilly and Rudy, 2000), but although the main ideas are intuitive, clear model
demonstrations were rare since then. Our simulation results underline these previous ideas, here with
respect to basal ganglia - cortex interactions, and clearly demonstrate the additional advantage of a slow

learning system which complements fast learners, required for survival.

As our model replicates key behavioral and physiological data of macaque monkeys performing a prototype
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distortion task (Antzoulatos and Miller, 2011), our model provides some confidence to allow us to further
delineate the potential mechanistic causes behind the observation that striatal neural activity is initially
a good predictor of stimulus category, while this category selectivity declines as the number of stimuli to
classify increases. Our simulations suggest that the drop in striatal category selectivity does not relate to
a disengagement of the striatum in category learning: the striatal cells’ response to category information
exhibits on average a strong preference to one category throughout the whole experiment, indicating
that striatal cells can acquire category knowledge when learning to classify a large number of stimuli.
Importantly, our model predicts that the decrease in the category selectivity of striatal cells occurs due
to an increase in the variability of the category response. We tested and confirmed this model prediction
by re-analysing the original monkey data obtained by Antzoulatos and Miller (2011). The large number
of simulations (100000) each performed with different model value parameters, assures that the results
are robust to modest changes in these parameters. The model did not show significant susceptibility to

changes in any of these parameters.

Our results may advance the field of computational models of category learning, which has already a long
tradition. Category learning models with a more psychological focus typically tend to abstract from details
of brain computation and focus mainly on a replication of behavioral data in different category learning
tasks such as prototype, probabilistic, rule-based and information-integration categorization tasks (for a
review see Richler and Palmeri (2014)). Most recent neuro-computational models of category learning
focus on the role of the ventral visual pathway, but typically simplify at the level of category decision by
relying on mechanisms of supervised learning to link feature and object information to categories (Serre,
2016). However, Cantwell et al. (2017) also emphasized the role of the basal ganglia in category learning
by merging a model of visual object processing with a model of procedural-learning based on the direct
pathway of the basal ganglia. While this is interesting, their model has been directed to learn correct
stimulus—response associations and to match the performance of human behavioural data in category
learning, it did not focus on the formation of category representations in PFC and likewise has not
been used to explain electrophysiological data such as those from the study of Antzoulatos and Miller
(2011). Our model demonstrates that the PFC can be trained by the BG to develop useful internal
representations for completing a prototype distortion and a simple, but real-world face categorization
task. As this learning is generic it may also provide the basis of other category learning tasks, although
some of them may recruit additional or slightly different brain areas (Seger and Miller, 2010; Richler and

Palmeri, 2014) and may therefore require more complex models.
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As the BG form multiple loops with most parts of cortex (Alexander et al., 1986; Haber, 2003) our
model could provide an inspiration for the organization of other loops as well. A further challenging and
unanswered question is how different cortical areas connect with each other across loops. The organization
of connections in early sensory areas may be approximately well explained by Hebbian learning. Cortico-
cortical areas further downstream likely require error signals and fast learning BG circuits to bias cortex
in a meaningful way so that brain circuits self-organize to find solutions that allow the organism to
survive, reproduce and evolve. Hélie et al. (2015) already suggested that the BG are required for learning
such cortico-cortical associations. Our study provides an example of how this may actually work and

may offer a blueprint for the organization of other cortico-cortical associations.
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Figure Legends

Figure 1. Outline of the components of the neuro-computional network to train the cortico-cortical,
IT-PFC connection by the basal ganglia (BG). All adaptive connections are displayed in green color.
While the IT-PFC connections are updated by Hebbian learning, the BG learn based on a three factor
learning rule including a reward prediction error signal (DA). We propose that the BG bias the activity
of PFC neurons which allow the PFC to learn a categorical representation. IT: inferior temporal cortex.
PFC: prefrontal cortex. Striatum D1 and Striatum D2: striatum cells expressing D1 and D2 dopamine
receptors, respectively. STN: subthalamic nucleus. SNr: substantia nigra pars reticulata. GPe: external

globus pallidus. VA: ventral anterior nucleus of the thalamus.

Figure 2. Image examples and block description of the prototype distortion task. a) Dot prototype
stimuli of two categories, taken from one experimental run. b) Number and type of stimuli per block.
Stimuli are distinguished according to whether they are added in the previous block or in the current

block. ¢) Stimuli of the second block, derived from the prototypes.

Figure 3. Examples of face stimuli presented to the model. The upper-row pictures correspond to the
category of Bill Clinton, the lower-row pictures to the category of George W. Busch. Each picture
shows a face with a particular expression and from a different perspective. Each greyscale image has a
size of 100x100 pixels and was obtained by applying a Viola-Jones filter to a particular frame of a

Youtube video.
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Figure 4. Detailed outline of the components of the neuro-computional network. The number of cells
that each neural population has is shown at the left-bottom corner of each population box. The reward
prediction error signal used by the BG to learn is generated at SNc. SNc: substantia nigra pars
compacta. StrThal: striatum with thalamic afferents. The rest of model nuclei are already specified in
Figure 1 as follows. IT: inferior temporal cortex. PFC: prefrontal cortex. Striatum D1 and Striatum
D2: striatum cells expressing D1 and D2 dopamine receptors, respectively. STN: subthalamic nucleus.
SNr: substantia nigra pars reticulata. GPe: external globus pallidus. VA: ventral anterior nucleus of the

thalamus.

Figure 5. Model performance across blocks for categorizing novel stimuli averaged from 82639
experiments. Since each block had a minimum of 16 trials (due to the criterion to succeed in a block),
we analyzed only the first 16 trials per block. Applying a sliding three-trial window, we then measured
the percentage of correct trials for each relevant trial across the all successful experiments (black line)
and the corresponding standard error of the mean (SEM). The obtained SEMs are too small to be shown

in this plot (smaller than 0.002) due to the large number of experiments considered in this analysis.

Figure 6. Mean d’ sensitivity index for category selectivity of neurons in the model’s PFC and
striatum. Horizontal and vertical axes refer to time and trials, respectively. The first phase represents
the first two blocks, the second phase the next two blocks, and the last phase the last four blocks. Only
successful experiments (82639 experiments) and successful trials of novel stimuli were considered in this
analysis. The analyzed data spread across a time interval spanning from cue onset to reward onset.
Each phase includes only its first 16 trials (i.e. 7 trial windows). Different values for the 64 model

parameters were set at the beginning of each experimental run.

Figure 7. Category and stimulus selectivity for each model cell in the striatum (red dots) and in the
PFC (blue dots) in all successful experiments. Both selectivities were measured at the end of each block
as outlined in the Methods section. The first block was omitted because there was only one stimulus per
category and, therefore, stimulus selectivity could not be computed. A maximum category selectivity of
1 indicates that the corresponding cell responds maximally to all stimuli of one category and becomes
inactive for the stimuli from the other category. Maximum stimulus selectivity, in contrast, indicates
that the corresponding cell responds to a single stimulus with maximum activity, but that it remains

inactive for the rest of the stimuli from the same category. While the category selectivity in the PFC
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clearly increases with each block the category selectivity in the striatum does not and cells stay stimulus
selective. The mean category and the mean stimulus selectivity of the PFC and STR cells is shown at

each axis by a blue and red triangle respectively. The error bars indicate the standard deviation.

Figure 8. Firing rates of three typical striatal cells plotted across all trials of one experimental run -
subdivided for presentation of stimuli from category A (left subplots) and category B (right subplots).

The seven vertical lines indicate block borders. The 64 model parameters were set to their base values.

Figure 9. Model prediction with respect to the individual components of the d’ sensitivity index of the
striatum. The values are computed at the last trial-time bin of each phase and from the same
simulation recordings used to obtain the STR d’ sensitivity index in Figure 6. a) Mean response to the
preferred category (dots in magenta line, pp) and to the non-preferred category (dots in green line, py)
per phase. The preferred category is the category for which each STR cell responds on average most
strongly in each single trial-time window. b) Mean standard deviation of the response to the preferred

category (dots in magenta line, op) and to the non-preferred category (dots in green line, o) per phase.

Figure 10. Averaged d’ sensitivity index across trials and time for the PFC and the striatal activities
recorded in a prototype distortion task without blocks. Horizontal and vertical axes refer to trials and
time, respectively. The subplots on the left and right hand side belong to PFC and striatal recordings,
respectively. Only successful experiments and successful trials of novel stimuli were considered in this
analysis. The analyzed data spread across a time interval spanning from cue onset to reward onset. The

64 model parameters were set to their base values in all considered simulations.

Figure 11. Across-trial performance of the full model (dark red line) and the BG-alone model (dark
blue line) across the 2500 trials of the task with real-world face stimuli. For each of the 2500 trials,
performance was averaged across 100 experimental runs. Moreover, standard errors of the mean (SEM)
were computed (filling color around the lines). A 25-trial window was employed to smooth the plot.
The black dot in the final trial represents the mean performance of the PFC alone in an extra set of
1000 trials, performed at the end of the 2500 trials, across 100 experimental runs. The corresponding
SEM is 0.00065, too small for being shown in the plot as the dot’s error bar. The 64 model parameters

were set to their base values in all considered simulations.

Figure 12. Effect of different PFC learning speeds on the full model’s performance in the learning task
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with real-world faces images. a) Tsrp is the time constant of the learning rule in the striatum and was
equal to 75 ms. 7pp¢ is the time constant of the learning rule in the PFC and its different values here
studied were 75, 975, 33375, 66675, and 100000 ms. Each red dot shows the mean performance across
100 experimental runs at the last trial (trial 2500). The error bars show the corresponding SEMs. b)
example (for each different condition) of PFC weight trajectory (red line) and STR weight trajectory
(blue line) across the trials of one experimental run. The weight value was normalized via dividing by
the maximum weight value of the recorded PFC and STR cells. In all considered simulations, the 64
model parameters were set to their base values except for the learning rule time constant in the PFC,

which was set to the value specified by each condition.

Figure 13. Across-trial performance of the full model (dark red line), the full model with an extra
connection from the PFC to the STR (dark blue line), and a model with the slow learning in the STR
instead of the PFC (gold line) across the 2500 trials of the task with real-world face stimuli. For each of
the 2500 trials, performance was averaged across 100 experimental runs. SEMs are also shown (filling
color around the lines). A 25-trial window was employed to smooth the plot. The 64 model parameters
were set to their base values in all considered simulations. The small model sketch summarizes the main

difference between the three models.

Figure 14. Analysis of the individual components of the striatum d’ sensitivity index computed from
the monkeys’ recordings obtained in the cue period. For each phase, the last trial-time bin is plotted. a)
Mean response to the preferred category (dots in magenta line, up) and to the non-preferred category
(dots in green line, p1n) per phase. The preferred category is the category for which each STR cell
responds on average most strongly in each single trial-time window. Because neural spiking activity
tended to rise with time of recording, we had to correct the neural firing rate to the pre-trial baseline,
hence, the negative average firing rate for the non-preferred category. b) Mean standard deviation of
the response to the preferred category (dots in magenta line, op) and to the non-preferred category

(dots in green line, o) per phase.
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