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Abstract22

213 words out of 250 maximum.23

In addition to the prefrontal cortex (PFC), the basal ganglia (BG) have been increasingly often reported24

to play a fundamental role in category learning, but the systems-level circuits of how both interact remain25

to be explored. We developed a novel neuro-computational model of category learning that particularly26

addresses the BG-PFC interplay. We propose that the BG bias PFC activity by removing the inhibition27

of cortico-thalamo-cortical loop and thereby provide a teaching signal to guide the acquisition of category28

representations in the cortico-cortical associations to the PFC. Our model replicates key behavioral and29

physiological data of macaque monkey learning a prototype distortion task from Antzoulatos and Miller30

(2011). Our simulations allowed us to gain a deeper insight into the observed drop of category selectivity31

in striatal neurons seen in the experimental data and in the model. The simulation results and a new32

analysis of the experimental data, based on the model’s predictions, show that the drop in category33

selectivity of the striatum emerges as the variability of responses in the striatum rises when confronting34

the BG with an increasingly larger number of stimuli to be classified. The neuro-computational model35

therefore provides new testable insights of systems-level brain circuits involved in category learning which36

may also be generalized to better understand other cortico-basal ganglia-cortical loops.37



Significance Statement38

119 words out of 120 maximum.39

Inspired by the idea that basal ganglia (BG) teach the prefrontal cortex (PFC) to acquire category40

representations, we developed a novel neuro-computational model and tested it on a task that was recently41

applied in monkey experiments. As an advantage over previous models of category learning, our model42

allows to compare simulation data with single cell recordings in PFC and BG. We not only derived model43

predictions, but already verified a prediction to explain the observed drop in striatal category selectivity.44

When testing our model with a simple real-world face categorization task, we observed that the fast45

striatal learning with a performance of 85% correct responses can teach slower PFC learning to push the46

model performance up to almost 100%.47

Introduction48

591 words out of 65049

The world is composed of an overwhelming number of different objects and variants of those objects.50

Category formation is the ability to extract commonalities among these diverse objects, allowing us to51

group experiences by concepts or categories, and therefore imbuing our world with meaning. Furthermore,52

we can generalize, and hence classify, stimuli we have never seen before into a category, a property also53

fundamental for the emergence of language.54

At least two brain areas are involved in category learning: the basal ganglia (BG) and the prefrontal55

cortex (PFC) (Seger and Miller, 2010). The BG have been shown to participate in a wide range of56

categorization tasks, particularly those that require implicit learning via trial and error (Merchant et al.,57

1997; Poldrack et al., 1999, 2001; Seger and Cincotta, 2005; Nomura et al., 2007; Cincotta and Seger,58

2007; Zeithamova et al., 2008). The PFC, in contrast, appears to hold category knowledge. Freedman59

et al. (2001, 2002, 2003) found PFC neurons that became preferably activated by stimuli of a particular60

category. Also, PFC cells are known to represent abstract rule-based categories (Wallis et al., 2001; Wallis61

and Miller, 2003; Muhammad et al., 2006; Antzoulatos and Miller, 2016).62

Some studies have suggested that the BG may train the PFC to slowly learn categories (Pasupathy and63

Miller, 2005; Miller and Buschman, 2008; Seger and Miller, 2010; Antzoulatos and Miller, 2011; Hélie et64
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al., 2015). Antzoulatos and Miller (2011) carried out an experiment in which monkeys were trained to65

classify a large number of different abstract stimuli composed of several dots into two possible categories.66

While monkeys learned this task, neurons from the PFC and the striatum were recorded. Early in this67

experiment, when there were just a few stimuli to classify, category selectivity was strong in the striatum,68

but weak in the PFC. As the task advanced, the number of possible stimuli to classify increased and the69

category selectivity became weak in the striatum and strong in the PFC (Antzoulatos and Miller, 2011).70

The fact that the striatum predicted categories better in the beginning of the experiment and the PFC71

later led Antzoulatos and Miller (2011) to suggest that the BG teach the PFC to encode categories.72

However, there is no obvious explanation for the observed decrease in striatal category selectivity. Further,73

the exact relationship between BG and PFC during category formation, e.g. the systems-level circuits74

that allow the BG to teach the PFC are not yet fully worked out.75

To study these open questions, we here developed a neuro-computational model and had it learn the76

experiment devised by Antzoulatos and Miller (2011). Our simulations suggest that although the striatal77

cells decrease on average their category selectivity, they typically remain selective enough to contribute78

to the final category decision: the knowledge acquired by the striatal cells can be very specific but79

also associated to several stimuli of the same category. Furthermore, our simulations predict that the80

striatal category selectivity decrease is due to an increase in the variability in the striatum cells’ category81

response, i.e. the striatal cells only respond to a subset of stimuli of one category as well as to some82

stimuli of the other category. We supported this prediction by re-analyzing the original experimental83

data of Antzoulatos and Miller (2011).84

In addition to the task used by Antzoulatos and Miller (2011), the model was tested on a task in which85

real-world face images had to be classified. This study revealed that even an imperfect teacher (the BG)86

can still train the PFC to push the model’s classification performance up to almost 100%.87
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Methodology88

Model Description89

Overview90

Our model comprises an open cortico-basalganglio-thalamic (CBGT) loop that interacts with a cortico-91

cortical-thalamo-cortical pathway to acquire category information and to produce category decisions.92

The two cortical areas involved are the Inferior Temporal cortex (IT) and the PFC (see Figure 1); the IT93

encodes stimulus information and the PFC learns to encode category knowledge. The BG bias activity in94

PFC such that Hebbian learning of the IT - PFC connectivity is sufficient to develop category selective95

cells in PFC.96

In this rate coding model, the membrane potential of all simulated neurons and the learning rules that97

determine synaptic plasticity between neighboring neurons are controlled by differential equations.98

The BG99

Our BG model is based on previous work (Schroll et al., 2014, 2015) , and contains three basal ganglia100

pathways (Schroll and Hamker, 2013): the direct (striatum → substantia nigra pars reticulata), hyperdi-101

rect (subthalamic nucleus → substantia nigra pars reticulata), and short indirect pathway (striatum →102

external globus pallidus → substantia nigra pars reticulata). Each of these three BG pathways obtains103

the input information from the IT and converges in the substantia nigra pars reticulata (SNr), a BG104

nucleus that tonically inhibits the ventral anterior nucleus (VA) of the thalamus.105

The function of each BG pathway emerges as a learning process, implemented via a three factor learning106

rule which considers the pre-synaptic activity, the post-synaptic activity and a dopamine (DA) signal. In107

our model, this DA signal estimates a reward prediction error based on the striatal activity at the time108

of reward delivery.109

In the direct pathway, learning occurs in the projections between the IT and the striatal D1 cells and110

between the striatal D1 cells and the SNr. Associations between neurons in these connections become111

strengthened with dopamine burts and weakened with dopamine dips as motivated by experimental data112

(Shen et al., 2008; Fisher et al., 2017). Consequently, this pathway learns to select a patch of VA neurons113

that are linked with the correct category decision, in agreement with the well-known GO-function of this114
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BG pathway (Nambu et al., 2002; O’Reilly and Frank, 2006; Braak and Del Tredici, 2008; Schroll and115

Hamker, 2013).116

In the hyperdirect pathway, learning occurs in the connections between the IT and the STN and between117

the STN and the SNr. Associations between neurons in these connections are also strengthened with118

dopamine peaks and weakened with dopamine dips (Kreiss et al., 1996; Schroll et al., 2012). Particularly,119

this pathway learns to suppress VA cells that encode currently unrewarded responses. Thus, both the120

direct and hyperdirect pathways work together to facilitate the selection of the correct category decision,121

in agreement with the well-known center-surround structure (Nambu et al., 2002).122

In the indirect pathway, learning takes place in the projections between the IT and the striatal D2 cells123

and between the striatal D2 cells and GPe. In contrast to the other two BG pathways, but consistent with124

biological evidence (Surmeier et al., 2007; Shen et al., 2008; Fisher et al., 2017), associations between cells125

of this pathway become strengthened with dopamine dips and weakened with dopamine peaks. Therefore,126

this pathway learns to suppress VA cells linked to an incorrect category decision, in accordance with the127

well-documented NO-GO-function of this BG pathway (Apicella et al., 1992; Mink, 1996). This pathway128

is particularly relevant if changes in the stimulus-response associations occur.129

A specific connectivity pattern is not forced on any of these plastic projections, providing our model130

with high flexibility. Connections are initialized in an all to all configuration with random low weights.131

The connectivity pattern is then automatically shaped through plasticity. On many previous modeling132

approaches of the BG a connectivity pattern with parallel channels (one for each action or here category)133

was enforced, without any clear account on how this arrangement could develop. Plasticity was therefore134

required only on early stages of the different pathways. An interesting feature of having plasticity in the135

late stages is that the knowledge acquired in the early stages of the pathways can be kept when learning136

a new task, allowing relearning to be faster than the initial learning as shown by Schroll et al. (2012).137

The basal ganglia-cortex interaction138

Our model includes a cortico-thalamo-cortical pathway which allows the BG to teach category knowledge139

to the cortico-cortical pathway from IT to PFC by biasing thalamic and thus, PFC activity. Once the140

category knowledge in the PFC is established, the PFC can also contribute to the final category decision141

by means of the cortico-thalamo-cortical pathway. Thus, the thalamus plays a key role in integrating the142

category decisions produced by both the BG and the PFC.143
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Category information is learned in the cortico-cortical connections between the IT and the PFC by an144

unsupervised Hebbian learning rule (please refer to the discussion regarding the assumption of unsuper-145

vised learning). As the BG disinhibits the thalamus, BG will bias PFC activation, which in turn guides146

(dopamine-free) Hebbian learning in the IT-PFC connections. The PFC cells in our model slowly learn147

over a large number of stimuli to extract category representations, in agreement with ideas suggesting that148

slow learning in the cortex is required to develop category representations in the PFC (Seger and Miller,149

2010). Evidence has been found for the existence of Hebbian plasticity in cortico-cortical long-range150

connections (Sjöström et al., 2001; Koch et al., 2013).151

Experimental design and statistical analysis152

Prototype distortion task153

In the experiment carried out by Antzoulatos and Miller (2011), two female monkeys performed a pro-154

totype distortion task in which they learned to classify stimuli into one of two different categories. We155

here re-analysed data from this previous experiment as explained later.156

We tested our model with a very similar version of the original experiment as follows. Each stimulus was157

composed of 7 white small squares (7 x 7 pixels each) drawn on black background within an image of158

140x140 pixels. Each stimulus belonged either to category A or B and was generated from the underlying159

category’s prototype by shifting the seven squares from the prototype’s coordinates randomly into nearby160

locations (Figure 2a). To mimic early visual processing up to area IT, we preprocessed the images using161

Gaussian receptive fields (RFs) with a standard deviation of 10 pixels (cut-off at 3.5 standard deviations162

which equals a diameter of 35 pixels), and a sampling distance between RF centers of 15 pixels (1.5163

standard deviations of RF size).164

The set of stimuli used in each experimental run consisted of 170 stimuli per category (each generated165

from its category’s prototype image) and was distributed into 8 blocks, where the stimulus set increased166

in size with each block: in each block n the set size was 2n, equally balanced for each category. In the167

first block, therefore, only two different stimuli were presented. In the second block two more stimuli were168

added to the set, reaching a total of 4. In subsequent blocks, only the stimuli added in the last block were169

kept and new stimuli were incorporated until a total of 2n was reached. Figure 2b illustrates the exact170

procedure. Each new block began only when 16 out of the last 20 trials were successfully performed,171
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identical to the original experiment.172

Because we aimed to focus on category learning only and did not model any eye-movement or working173

memory components involved in the original animal task, we simplified the trial design by omitting the174

delay period and the oculomotor response. At the beginning of each trial, a stimulus was randomly drawn175

from the set of the current block and presented to the model for 550 ms. After 50 ms we determined the176

model’s decision using a softmax rule on a set of output neurons:177

Pi =
ri + θ

(
∑N

j=1 rj) + θ
(1)

where Pi is the probability of choosing category i, ri is the rate of the output neuron associated to178

category i, N is the number of categories, and θ = 10−7 prevents from dividing by zero. The output179

neurons read our model’s decision from the thalamic activity. Although 50 ms is a short time period,180

it is large enough for the model to reach a stable response to the presented stimulus. Data show that181

monkeys can make a decision between 25-50 ms if visual and motor latency are not considered (Stanford182

et al., 2010).183

In the case of a correct response, dopaminergic SNc cells were excited for 500 ms, simulating the delivery184

of reward (reward period). To meaningfully compare our model’s results with data from monkeys, we185

ran a very large number of experimental runs (100000) each with different initial synaptic weights and186

with slightly different values of 64 model parameters (see the mathematical model description). For each187

experimental run, a different set of stimuli was chosen among 100 possible sets of stimuli (each generated188

from two different category prototypes).189

Model susceptibility to parameter variation190

To study the susceptibility of our model to modest changes in model value parameters, we computed191

the correlation between the model performance and each of the 64 parameters modified in the 100000192

experimental runs. Each of these correlations was computed with the Pearson correlation coefficient193

(PCC), employing the corrcoef numpy function, and considering 100000 data pairs, each made up of the194

model performance and the parameter value (or the absolute value of the distance between the parameter195

value and the mean parameter value, for a second version of the PCC) from a different experimental run.196

The model performance at each experimental run was evaluated by computing the average of correct197
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trials in the last 16 trials of the experimental run.198

Category selectivity199

In order to compare our model with the neurophysiological findings reported by Antzoulatos and Miller200

(2011), category selectivity was measured from model neurons’ activity during the display of novel stimuli201

in correct trials, as previously done by the authors of the physiological experiment. As with the exper-202

imental data, category selectivity was computed within a trial-time window (size of 10 trials and 7 ms)203

moving in trial and time space (trial step size of 1 trial and a time step size of 3 ms). Trial-time windows204

with less than two trials associated to one category were discarded. The d’ sensitivity index205

d′(μA, μB, σA, σB) =
|μA − μB|√

σ2

A
·(na−1)+σ2

B
·(nb−1)

na+nb+2

(2)

was computed for each cell within each window, where μA and σA are the mean and standard deviation,206

respectively, of the cell’s firing rates recorded in trials where stimuli of category A were presented, μB and207

σB are the mean and standard deviation of the firing rates recorded in trials where stimuli of category208

B were presented, and na and nb are the number of trials in the corresponding window that relate to209

stimuli of category A and B, respectively. In the striatum, we only considered cells of the direct (Go-)210

pathway as these cells are mainly responsible for selection while cells in the indirect (No-Go-) pathway211

are responsible for suppression (Schroll et al., 2014).212

Stimulus selectivity and category selectivity per cell213

To study if cells in PFC and STR become stimulus selective rather than category selective, we applied214

the following procedure. At the end of each block, learning was frozen and each stimulus seen so far in215

the experiment was presented once to the model for 50 ms, followed by a period of 100 ms without a216

stimulus. The response of a cell to each presented stimulus was computed by averaging the cell’s activity217

over 50 ms presentation time and normalized by its maximum response to all stimuli within a block.218

We defined a stimulus selectivity index (SIstim) which measures if a cell is particularly tuned to a single219

stimulus compared to the rest of the stimuli belonging to the same category:220
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SIstim = max(∀s ∈ S.(Rs −Rs)) (3)

where s is a presented stimulus, S is the set of presented stimuli, Rs is the cell’s response to s, and Rs is221

the mean cell’s response to those stimuli in S that are different from s and belong to the same category222

as s.223

Category selectivity (SIcat) was measured by computing the absolute value of the difference between224

the cell’s mean response to stimuli of one category and the cell’s mean response to stimuli of the other225

category (i.e. the numerator of the d’ sensitivity index).226

SIcat = |RA −RB | (4)

where RA is the mean cell’s response to the stimuli that belong to category A, RB is the mean cell’s227

response to the stimuli that belong to category B.228

We did not compute the full d’ sensitivity index because we wanted the stimulus selectivity and the229

category selectivity to be plotted in the same scale. Therefore, the category selectivity was normalized230

in the same way as the stimulus selectivity (via normalizing the responses of each cell).231

Only experiments that learned to criterion (in each block 16 out of 20 consecutive trials have to be232

correctly classified before the maximum number of trials determined in each block is reached) were233

considered for the analysis.234

Face categorization task235

To test the model’s performance in a real-world classification scenario, we created an additional face236

categorization task. Face pictures of George W. Bush and Bill Clinton were extracted from videos and237

presented to the model for classification purposes.238

All videos were taken from the YouTube Faces Database (Wolf et al., 2011), which consists of 3425 videos239

of 1595 different people, downloaded from Youtube and manually annotated. The shortest clip duration240

was 48 frames, the longest clip consisted of 6,070 frames, and the average length of a video clip was 181.3241

frames. For Bill Clinton, we obtained 4 videos with a total of 851 frames and for George W. Bush, we242
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obtained 5 videos with a total of 820 frames.243

For each frame, the face region was detected using a Viola-Jones filter (Viola and Jones, 2004), allowing244

to extract and resize each face to a 100x100 grayscale image. Figure 3 shows a few examples of the245

resulting face images.246

To obtain high-level facial features that mimic the computation in visual areas, we trained a neural net-247

work using the keras library (https://keras.io/) and the Theano backend (http://deeplearning.net/softwar248

e/theano/). The training set consisted of all the images obtained from the YouTube Faces Database ex-249

cept those of George W. Bush and Bill Clinton, providing us with 619455 input images of 1593 people250

(labels).251

The neural network starts with a single convolutional layer, extracting 16 filters of size 6x6 and using252

a rectified linear transfer function (ReLU). It is followed by a max-pooling layer over 2x2 units and a253

dropout layer with p = 0.5. This layer feeds a fully connected layer (100 neurons, ReLU transfer function254

and dropout 0.5) which itself feeds a softmax layer with 1593 neurons (one per label).255

The network was trained by minimizing the categorical cross-entropy between the true labels and the256

predictions using the Stochastic Gradient Descent (SGD) method, with mini-batches of 100 samples, an257

initial learning rate of 0.01 decaying by 10−6 in each epoch, and a Nesterov momentum of 0.9. After 100258

epochs, the network obtained an accuracy of 99.2% on a test set composed of 61945 randomly selected259

samples (10% of the whole data, not used for training). Finally, the high-level facial features for category260

learning of Bush and Clinton images were extracted by taking the neural activation prior to the last261

softmax layer.262

Mathematical model description263

The neuro-computational model was implemented using the ANNarchy neural simulator (Vitay et al.,264

2015) version 3.0. The forward Euler method had been used to numerically solve these differential265

equations with a time step of 1 ms. Figure 4 shows our model’ architecture with more detail than in266

Figure 1 by illustrating the number of cells in each neural population, all the connections in the model,267

and the type of these connections.268
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The IT269

IT is composed of 100 neurons whose membrane potentials are computed by:270

τm ·
dmIT

j (t)

dt
+mIT

j (t) = Sj (5)

where mIT
j is the membrane potential of the neuron j; τm = 10 ms is the time constant; and Sj is the271

part of the preprocessed image that this neuron receives. The firing rate rITj (t) is calculated by applying272

()+ to the membrane potential, where ()+ is a function that takes the positive part of its argument (all273

negative arguments are transformed to 0)274

The BG275

The BG model is based on the one by Schroll et al. (2014). We again briefly describe the model and276

highlight the changes we implemented.277

The membrane potential of all cells in the BG is defined by a leaky-integration equation:278

τm ·
dmj(t)

dt
+mj(t) =

∑
pre∈Ne

I
pre
j (t)−

∑
pre∈Ny

I
pre
j (t) +Bj + εj(t) (6)

where mj is the membrane potential of neuron j, τm = 10 ms the time constant, Bj the baseline of the279

cell’s membrane potential (2.4 for the SNr, 1.0 for the GPe and 0.4 for the other nuclei), εj(t) is random280

noise sampled from a uniform distribution in the interval [-1.0 , 1.0] for the GPe and SNr, and [-0.1 ,281

0.1] for the other nuclei; Ipre the input from the presynaptic neural population to neuron j, Ny the set282

of presynaptic neural populations with inhibitory synapses to neuron j, and Ne the set of presynaptic283

neural populations with excitatory synapses to neuron j.284

The inputs are computed as:285

IPre
j (t) =

∑
i∈Pre

wi,j · r
Pre
i (7)

where wi,j(t) is the weight of the synapse between the presynaptic neuron i and the postsynaptic neuron286

j, and rPre
i (t) is the firing rate of the presynaptic cell i.287

Equation 7 is used to compute the impact of all the connections in our model except for the case of the288

10



SNr lateral connections. The model includes plasticity in connections from the striatum and the STN289

to the SNr. Although uncommon, this approach gives the model a high level of flexibility as it doesn’t290

force a particular connectivity pattern but lets the network develop it by itself. Unfortunately, except291

of the striatum, little is known about neural plasticity in the BG. As reviewed by Schroll and Hamker292

(2013) not only the striatum, but other nuclei are innervated by axons of dopamine neurons. Further,293

administration of the dopamine precursor levodopa has been shown to affect synaptic plasticity in SNr294

(Prescott et al., 2008). Dopamine dependent plasticity in our model SNr avoids that striatal cells are295

hard wired to one category in the SNr — an approach necessary for previous models of BG, which are296

hard wired from striatum to thalamus. Further, learning requires competition between cells, otherwise297

all neurons would learn similar features. To implement competition in the SNr, the impact of the SNr298

laterals is computed by multiplying the synaptic weights by a reversal factor (1 − rPre
i (t))+:299

IPre
j (t) =

∑
i∈Pre

wi,j · (1 − rPre
i (t))+ · rPre

i (8)

where the synaptic weights of the lateral connections in the SNr are excitatory and fixed to 1. There is no300

direct evidence for our assumed SNr circuitry, mainly due to a lack of studies, but our assumption agrees301

with data showing that activations of the direct pathway cells in the striatum can elicit both excitation302

and inhibition of SNr neurons (Freeze et al., 2013; Hikosaka et al., 1993). Lateral connections in the303

striatum D1 (StrD1), striatum D2 (StrD2) and STN are inhibitory and set to 0.3.304

SNc follows an equation that produces the dopamine signal and is the only part of our network that is305

not governed by equation 6:306

τm ·
dmSNc

j (t)

dt
+mSNc

j (t) = (1 −R) · (−10 · IStrD1
j (t)) +R · (1 −BDA − IStrD1

j (t))+ +BDA (9)

where BDA = 0.1 is the baseline of the cell’s membrane potential. IStrD1
j (t) is the impact from the307

connections of all StrD1 cells to the SNc which learn to represent the reward prediction at the time308

of the reward delivery. R is a term that changes depending on whether reward is delivered (set to 1)309

or omitted (set to 0). The dopamine signal is only computed during the reward presentation period310

and it encodes a reward prediction error at the time of the reward delivery using D1 striatal neurons311

activity for the prediction, as these cells have been reported to be part of the pathway that project to the312

dopaminergic neurons, see Vitay and Hamker (2014) for a more detailed model of the reward prediction313
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error computation.314

The firing rate of all cells in our model is calculated by applying ()+ to the membrane potential. The315

learning rule to update the synaptic weights from the IT cells to the 16 StrD1 cells, 16 StrD2 cells and316

16 STN cells is:317

τw ·
dwIT−POST

i,j (t)

dt
= fDA(DA(t)−BDA) · C − αPOST

j (t) · ((rPOST
j (t)− rPOST (t))+)2 (10)

with C being the covariance term:

C = (rITi (t)− rITt (t)− γpre) · (r
POST
j (t)− rPOST (t))+ (11)

fDA(x) a function that determines how dopamine influences learning (where Td = 1 for cells in the direct318

and hyperdirect pathway and Td = −1 for cells in the indirect pathway):319

fDA(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(Td · 2 · x) if (Td · x) > 0

(Td · 0.8 · x) if (Td · x) < 0 ∪ (Tc · C) > 0

0 else

(12)

and αj the adaptive normalization variable (Tc = 1 for excitatory connections and Tc = −1 for inhibitory320

connections):321

dαPOST
j (t)

dt
+ αPOST

j (t) = (Tc ·mj(t)−mMAX)+ (13)

Where τw = 75 ms is the time constant. Synapses are randomly initialized with a uniform distribution322

in the interval [0.0 , 0.3].323

With dopamine peaks, very active StrD1 and STN cells will strengthen their connections with the active324

IT cells and weaken their connections with the rest of IT cells. With dopamine dips, the connections325

between very active StrD1 and STN cells and active IT cells weaken. The dopamine learning effect is326

reversed in the projections from IT to StrD2 cells. Thus, with dopamine dips, the most active StrD2327

cells will strengthen their connections with the active IT cells and weaken their connections with the rest328

of IT cells. With dopamine peaks, the connections between very active StrD2 cells and active IT cells329
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weaken.330

The covariance term C depends on the following parameters and variables: the firing rate of the post-331

synaptic cell rPOST
j (t); the mean of the firing rates in the postsynaptic layer rPOST (t); a threshold332

γpre = 0.15; the firing rate of the IT neuron rITi (t); and the mean firing rate in the IT layer rIT (t).333

fDA(x) depends on the dopamine level DA(t) and the dopamine baseline BDA = 0.1.334

The subtractive term of the right hand side of equation 10 serves to saturate the synaptic weights of a335

cell so that the cell’s firing rate is also bound. Equation 13 shows that αPOST
j depends on the membrane336

potential of the postsynaptic cell (mj(t)); and a threshold (mMAX = 1).337

The learning rule for changing the connection from the StrD1 to the SNr, from StrD2 to GPe cells, and338

from STN to SNr cells is:339

τw ·
dwPRE−POST

i,j (t)

dt
= fDA(DA(t)−BDA) · (−C)− αPOST

j (t) · (−C)+ (14)

with the covariance term:340

C = Tc · (r
PRE
i (t)− rPRE

t (t))+ · (−rPOST
j (t) + rPOST (t)− γpost) (15)

fDA(x): the variable that determines how dopamine influences learning via Equation 12; and αj : the341

adaptive normalization variable computed via Equation 13.342

where τw = 50 ms is the time constant. Synapses are randomly initialized by values taken from a uniform343

distribution in the interval [0.0 , 0.05].344

The additive term on the left side of equation 14 ensures that during peaks of dopamine, the most active345

StrD1 cells will strengthen their connections with the less active SNr cell and weaken their connections346

with the other SNr cell; and the most active STN cells will strengthen their connections with the most347

active SNr cell and weaken their connections with the other SNr cell. With dopamine dips, the most348

active StrD1 cells will weaken their connections with the less active SNr cell and the most active STN349

cells will strengthen their connections with the less active SNr cell.350
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In the case of the StrD2-GPe projections, the dopamine learning effect is the opposite of the dopamine351

effect in the StrD1-SNr projections. Then with dopamine dips, the most active StrD2 cells will strengthen352

their connections with the less active GPe cell and weaken their connections with the other GPe cell.353

With dopamine peaks, most active StrD2 cells will weaken their connections with the less active GPe354

cell.355

C depends on the following parameters and variables: a threshold γpost = 0.15, the firing rate of the356

presynaptic neuron rPRE
j (t), the mean of the firing rates in the presynaptic layer rPRE(t), the firing rate357

of the postsynaptic cell rPOST
j (t), and the mean of the firing rates in the postsynaptic layer rPOST (t).358

The threshold of αPOST
j is mMAX = 1 for the StrD1-SNr connections, mMAX = 2.6 for the STN-SNr359

connections, and mMAX = 2 for the StrD2-GPe connections. The SNr and GPe also receive thalamic360

feedback which is provided by direct connections from the VA to a sub-population of striatal cells (StrThal361

in Figure 4), that in turn project to both the GPe and the SNr. These projections help to stabilize the362

BG decision by enhancing the inhibition of the selected category in the SNr. This stabilization allows to363

reliably notify the BG pathways which category decision should be reinforced when a dopamine peak is364

generated (Brown et al., 2004). The connections from the StrThal to the SNr and GPe are set to 0.3,365

from the VA to the StrThal to 1, and the lateral connections in StrThal to 0.3.366

The connections from the StrD1 cells to the SNc cell are updated by equations 16 and 17:367

τw ·
dwStrD1−SNc

i,j (t)

dt
= gDA · (DA(t) −BDA) · (r

StrD1
i (t)− rStrD1

t (t))+ (16)

with368

gDA =

⎧⎪⎪⎨
⎪⎪⎩
1 if reward

3 if no reward

(17)

where τw = 100000 ms is the time constant; rStrD1
j (t) is the firing rate of the neuron j in the StrD1 layer;369

rStrD1(t) is the mean of the firing rates in the StrD1 layer; gDA is a parameter that scales the effect370

of dopamine dips and peaks in learning; DA(t) is the dopamine level; and BDA is the baseline of the371

dopamine level. Consequently, peaks in dopamine will strengthen the connections between the SNc cell372
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and the most active StrD1 cells and dips will weaken these connections.373

Finally, we summarize the difference between our model and the one by Schroll et al. (2014). As our374

examples required only two categories to learn, our SNr and GPe are composed of two cells instead of four.375

As a result, the synaptic values of the SNr lateral connections are fixed to 1.0 instead of being plastic.376

The synaptic values of the plastic connections in the model are randomly initialized from a uniform377

distribution; instead, Schroll et al. (2014) initialized these synaptic weights to zero. The projections378

from the IT to the BG input nuclei are only excitatory in our model. In contrast, Schroll et al. (2014)379

allowed these synaptic weights to switch their character between excitatory and inhibitory during learning.380

Learning in the present model does not rely on calcium traces implemented in the previous model as they381

are not required for the purpose of this study. The learning rules from the IT to the BG input nuclei382

have been slightly changed (in the subtractive term of the learning rules). Finally, the time constant of383

the IT membrane potential, the mMAX for the STN-SNr connections and the fixed weights of wSNr−V A
384

were modified.385

The cortico-thalamic architecture386

The membrane potential mj of the 2 VA and the 16 PFC cells is computed by the equations 6 and 7,387

with a time constant of 10 ms; the random noise is generated from a uniform distribution in the interval388

[-0.05 , 0.05] for the PFC and in [-0.0001 , 0.0001] for the VA; and the baseline is 0 for both populations.389

The firing rate is calculated by applying ()+ to the membrane potential.390

The connectivity between PFC and VA is fixed and ensures that a PFC cell can only obtain its input391

from a single VA cell to avoid any overlapp. The number of PFC cells connected to a VA cell is balanced392

equally. The weight values are defined as follows: wV A−PFC , wPFC−V A and wPFC−PFC are fixed with393

values 0.35, 0.15, and 0.1 respectively. wIT−PFC are randomly initialized with a uniform distribution in394

the interval [0.2 , 0.4] and modified by the following learning rule:395

τw ·
dwIT−PFC

i,j (t)

dt
= (rITi (t)− rITt (t)− γpre) · (r

PFC
j (t)− rPFC(t))+

−αPFC
j (t) · ((rPFC

j (t)− rPFC(t))+)2 · wIT−PFC
i,j (t) (18)

where τw = 15000 ms; γpre = 0.15, and αPFC
j (t) is the variable that contributes to the dynamic synaptic396
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saturation (eq. 13), with threshold mMAX = 3.5.397

In the most active PFC cells, the synapse will be strengthened if the presynaptic cell’s firing rate is above398

the population mean and will be weakened otherwise. The subtractive term on the right side of equation399

18 ensures dynamic synaptic saturation as in the Oja’s learning rule (Oja, 1982).400

Variation of 64 model parameters401

Each of the 100000 simulations was performed with different values for 64 model parameters. The value402

of each of these parameters was randomly selected from an uniform distribution in the interval between403

plus/minus 10% of the parameter’s value previously specified in the mathematical model description.404

The 64 model parameters are: the membrane potential’s baseline for the different neural populations, the405

membrane potential’s noise for the different populations, the time constant of the different learning rules,406

the mMAX of each learning rule, the γpre of each learning rule, the scaling factor for dopamine peaks and407

the scaling factor for dopamine dips in the fDA(x) of each projection, the scaling factor for the reward408

prediction signal when reward is not delivered, the value of gDA when reward is not delivered, and the409

synaptic weights of the different fixed connections.410

Results411

Simulation Results412

To meaningfully compare our model’s results with physiological and biological data and, at the same413

time, test the robustness of our model, we ran 100000 category learning experiments each with randomly414

generated initial synaptic weights and with randomly generated values for 64 model parameters. Each415

of these parameters’ values was randomly determined from a uniform distribution in an interval between416

plus/minus 10% of its value specified in the method’s section (base value). With a total of 100000 of417

these experimental runs, we consider a large number of variations for the 64 model value parameters.418

Further, we used some variability in the learning task by choosing for each experimental run a different419

set of stimuli among 100 possible sets of stimuli, each generated from two different category prototypes.420

An experiment was considered successful when, within 65 trials per block, 16 out of 20 consecutive421

trials were correct in each block. The model successfully executed 82639 out of 100000 experiments422
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(82.639%), a proportion slightly better than that of monkeys (Antzoulatos and Miller, 2011): 19 out of423

24 (79.166%). Further, the model showed a similar learning performance across the paradigm than that424

of monkeys (Figure 5): initially, the model randomly selected a category (50% correct performance); the425

performance gradually improved from the first block to the fourth block; and from the fifth block on, the426

performance saturated at around 96.5%.427

The Pearson correlation coefficient (PCC) between each of the 64 parameters and the model’s performance428

(computed for each experimental run as the percentage of correct trials in the 16 last trials) is very low:429

between −0.035 and 0.041, indicating that the model tolerates modest changes in any of the specified430

model value parameters. When the PCC considered the absolute values of the perturbations produced in431

each parameter base value instead of the values of each parameter, correlations are even smaller: between432

−0.01 and 0.01.433

Importantly, our model reproduced the key neurophysiological findings of Antzoulatos and Miller (2011):434

at the beginning of the paradigm, striatal cells were strongly category selective and PFC cells were weakly435

category selective, while later on, PFC cells became highly category selective and striatal cells weakly436

category selective (Figure 6).437

In the following, we use the model as a tool to better understand this key finding. When we analyse each438

cell’s category and stimulus selectivity over 100 simulations (with fixed model parameters) we see that439

PFC and striatal cells show a different selectivity profile (Figure 7). Throughout the paradigm, there were440

striatal cells that were stimulus selective and striatal cells that were category selective, indicating that441

striatal cells encode both, specific and abstract knowledge. Importantly, this result shows that, although442

the striatum d’ sensitivity is reduced late in the experiment, there are striatal cells involved in category443

learning throughout the whole experiment. PFC cells, in contrast, increased their category selectivity444

across blocks while their stimulus selectivity remained low throughout the paradigm, supporting that445

these cells encode generalized, categorical knowledge.446

Three example striatal cells illustrate different response characteristics to stimuli of both categories (Fig-447

ure 8). The first cell exclusively responds to stimuli of one category throughout the experiment, but from448

block IV onwards, it does not respond to all stimuli of its preferred category. Thus, its category responses449

become more variable within the set of stimuli of the preferred category. The second cell switches its450

category selectivity. Furthermore, the variability of this cell’s category response is higher in the last451

blocks than in the first blocks. A third cell responds to stimuli of one category in the first blocks, but452
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becomes selective to stimuli of the other category in the later blocks as well. Therefore, this cell loses its453

category selectivity and appears to become selective to input patterns common to both categories.454

When we analyse the response characteristics across all cells, we observe that the distance between the455

mean response to the preferred category μP and the mean response to the non-preferred category μN456

reduces after the first phase, due to a reduction in μP and a small increase in μN (Figure 9a). However, the457

mean response to the preferred category stays much higher than the one to the non-preferred category in458

all three different phases of the experiment, showing that striatal cells have on average a clearly preferred459

category throughout the experiment. Thus, a cell responding to both categories (see Figure 8) is not the460

typical case.461

The increase in the standard deviation of the response to the preferred category σP and the standard462

deviation of the response to the non-preferred category σN (Figure 9b) confirms our observations of the463

example cells in that the striatal response to category information becomes more variable after the first464

phase of the experiment.465

As these results suggest that the decrease in μP − μN is due to an increase in the variability of the466

category response, our model predicts that the decrease of the d’ sensitivity index is primarily the result467

of an increase in the variability of the category response.468

We next explored why the decrease in striatal category selectivity and the accompanying increase in469

variability occurred. As a first hypothesis, we reasoned that - as PFC category selectivity increased470

with learning - striatal category selectivity became less required for successful task performance and was471

therefore unlearned as the neural activity in the striatum may not be the cause of the final decision. To472

test this hypothesis, we ran 100 additional simulations with our model, but we now blocked learning in473

the PFC so that the BG were performing the experiment alone. However, the striatal d’ sensitivity index474

abruptly decreased after the first phase and stayed at a low level in the next two phases, qualitatively475

very similar to the full model, therefore, ruling out that the decrease in striatal category selectivity occurs476

due to a PFC dominance in later blocks.477

As another hypothesis, we tested whether, as task performance increased, dopamine peaks (i.e., positive478

reward prediction errors) in the model stopped appearing - which would have impaired further learning479

in the striatum. However, dopamine peaks were only reduced to 43% on average, enough to still produce480

large synaptic changes in the striatum.481
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Next, we tested whether the increase of the variability in the striatal category response and therefore the482

decrease of the striatal category selectivity is produced by the learning of a large diversity of stimuli. To483

test this idea, we ran 100 simulations with the full model performing a new prototype distortion task in484

which the diversity of exposed stimuli is large and constant from the beginning of the task. Rather than485

subdividing the prototype distortion task into blocks with increasing numbers of stimuli across blocks,486

any stimulus from the whole repertoire of stimuli available per experiment could be presented in each487

trial. We now observe a low striatal category selectivity from the beginning of the experiment (Figure488

10) and no drop in the selectivity index. Since PFC category selectivity rises to high values, the BG489

still teach PFC cells to develop category representations, indicating that the BG are involved in the490

categorization task. Consequently, this result supports that the decrease in the d’ sensitivity index is491

due to the fast learning of a large diversity of exposed stimuli, which makes it impossible for the striatal492

cells to acquire complete category representations and to respond to all stimuli of the preferred category.493

Thus, the fact that the d’ sensitivity index in this revised experiment is low from the beginning, discards494

a PFC dominance in the category decision and an omission of dopamine peaks as reasons for the low495

striatal category selectivity, since both effects occur later in the experiment.496

To further explore BG and PFC interactions, we compared the performance of the full model with the497

performance of the BG and the PFC alone in a slightly more challenging, real world category learning498

task. In each of the 2500 trials of this task, an image randomly selected from 1671 images of Bill499

Clinton and George W. Bush (extracted from Youtube videos and therefore varying in perspective and500

facial expressions) was presented to the model for classification purposes. In order to mimic early visual501

perception up to area IT, we used a convolutional network trained on other faces to transform each image502

into a 100 dimensional vector representing the high-level facial features of the corresponding image (see503

Methods). In order to adapt the model to these new inputs, two small changes were implemented. First,504

slower learning in the PFC (τw = 100000 ms) was required to guarantee that the common patterns among505

inputs of a category were extracted. Secondly, the pre-synaptic threshold in the PFC learning rule was506

set to γpre=0.0 to ensure that all relevant features of the input space were learned. Surprisingly, the BG507

model alone achieves a much weaker performance than the full model and the PFC alone (Figure 11).508

The BG and the full model very soon reached 85%. While the full model slowly improved its performance,509

finally achieving a level of 97.4%, the BG alone lack further improvement and their performance fluctuates510

around 85%. The performance of the PFC alone, with a 95.6% of correct responses after the training511

of the full model, is only 1.8% lower than the full model’s performance. Thus, with a difference in512
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performance between the full model and the BG alone of around 12.2% and a difference in performance513

between the PFC alone and the BG alone of around 10.4%, we can corroborate the relevant role of the514

PFC in pushing the categorization performance to high levels with complex input stimuli. We have also515

found that Hebbian learning alone is not enough to reach a high performance on the task.516

To ensure that the slow learning in the PFC is key for pushing the categorization performance of the517

full model above the BG categorization performance, we compared the categorization performance of five518

full model configurations each with different learning speed in the PFC. Categorization performance was519

here evaluated across 100 runs on the category learning task of faces. Figure 12 illustrates that the full520

model’s performance increases as the speed in the PFC learning rule decreases, confirming the principal521

role of the slow learning in the PFC for achieving high categorization performance.522

To study if the slow learning alone can be sufficient, we ran the BG alone with slow learning in an523

additional region of the striatum. However, the BG with slow learning reach a significantly lower per-524

formance (around 17.4% lower) than the full model (Figure 13). Also, to study the effect of additional525

basal-ganglio-cortical connections seen in vivo, we added to our model the well-known connection from526

the PFC to the STR (Ferry et al., 2000). Figure 13 shows that this version of the model does not alter527

the performance previously achieved by our full model, indicating that this connection does not have a528

relevant effect on the simulated task.529

Physiological results530

Even though the striatum d’ sensitivity index abruptly decreases after the first phase, our model predicts531

that on average, the striatal cells remain selective for a preferred category, but their response to category532

information becomes more variable (Figure 9). To empirically test these predictions, we went back to the533

original monkey data. In accordance with our simulation results, the monkey data shows that the mean534

response to the preferred category μP weakly decreases after the first phase and that the mean response to535

the non-preferred category μN slightly increases after the first phase (Figure 14a). Most importantly, μP536

is significantly higher than μN in the three phases, confirming that although the striatum d’ sensitivity537

index shows a large decrease, the striatal cells show a preferred categorical response in the course of the538

experiment.539

In agreement with our model, the monkey data shows that both the variability of the striatal response540
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to the preferred category σP and the variability of the striatal response to the non-preferred category σN541

increases after the first phase, while σP is higher than σN (Figure 14b).542

Discussion543

977 words out of 1500.544

We introduced a new neuro-computational model of category learning to investigate interactions of basal545

ganglia and PFC. While it is known that the PFC receives a dopaminergic input, though less than546

the striatum (Seger and Miller, 2010), its phasic properties are less pronounced due to the very slow547

decay of DA in PFC as reviewed by Lapish et al. (2007). Lapish et al. (2007) suggested that the co-548

release of glutamate from DA neurons may serve as a temporally precise signal to allow PFC neurons to549

switch between different modes that affect local network dynamics. However, how such DA dependent550

states may subserve reinforcement learning of cortico-cortical connections has not been discussed. Thus,551

we took the conservative assumption that cortico-cortical connections follow a Hebbian learning rule.552

Hebbian learning however, is insufficient for categorizing complex input stimuli at high performance553

levels. Therefore, the PFC requires teaching signals to guide learning towards useful representations554

at an intermediate level between perception and action. We here explored the hypothesis that the BG555

modulate the cortico-thalamo-cortical loop and thus provide the PFC with the required task related556

information. Unlike the mesocortical DAergic signal, the BG teaching signal provides no reward related557

information to the PFC. It supplies the PFC with a desired response for the current input as estimated by558

the BG. Interestingly, the ‘teacher’ can display a much lower performance than the ‘student’ (Figure 11).559

Due to the slow learning of the cortico-cortical connections (here IT-PFC), occasionally wrong decisions560

transferred by the BG are tolerated. The BG with 85% correct performance still teach the PFC to push561

the model’s performance up to almost 100%. Potential benefits of combined fast and slow learners have562

been laid out in the context of memory consolidation based on models of the cortex and hippocampus563

(McClelland et al., 1995; O’Reilly and Rudy, 2000), but although the main ideas are intuitive, clear model564

demonstrations were rare since then. Our simulation results underline these previous ideas, here with565

respect to basal ganglia - cortex interactions, and clearly demonstrate the additional advantage of a slow566

learning system which complements fast learners, required for survival.567

As our model replicates key behavioral and physiological data of macaque monkeys performing a prototype568
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distortion task (Antzoulatos and Miller, 2011), our model provides some confidence to allow us to further569

delineate the potential mechanistic causes behind the observation that striatal neural activity is initially570

a good predictor of stimulus category, while this category selectivity declines as the number of stimuli to571

classify increases. Our simulations suggest that the drop in striatal category selectivity does not relate to572

a disengagement of the striatum in category learning: the striatal cells’ response to category information573

exhibits on average a strong preference to one category throughout the whole experiment, indicating574

that striatal cells can acquire category knowledge when learning to classify a large number of stimuli.575

Importantly, our model predicts that the decrease in the category selectivity of striatal cells occurs due576

to an increase in the variability of the category response. We tested and confirmed this model prediction577

by re-analysing the original monkey data obtained by Antzoulatos and Miller (2011). The large number578

of simulations (100000) each performed with different model value parameters, assures that the results579

are robust to modest changes in these parameters. The model did not show significant susceptibility to580

changes in any of these parameters.581

Our results may advance the field of computational models of category learning, which has already a long582

tradition. Category learning models with a more psychological focus typically tend to abstract from details583

of brain computation and focus mainly on a replication of behavioral data in different category learning584

tasks such as prototype, probabilistic, rule-based and information-integration categorization tasks (for a585

review see Richler and Palmeri (2014)). Most recent neuro-computational models of category learning586

focus on the role of the ventral visual pathway, but typically simplify at the level of category decision by587

relying on mechanisms of supervised learning to link feature and object information to categories (Serre,588

2016). However, Cantwell et al. (2017) also emphasized the role of the basal ganglia in category learning589

by merging a model of visual object processing with a model of procedural-learning based on the direct590

pathway of the basal ganglia. While this is interesting, their model has been directed to learn correct591

stimulus–response associations and to match the performance of human behavioural data in category592

learning, it did not focus on the formation of category representations in PFC and likewise has not593

been used to explain electrophysiological data such as those from the study of Antzoulatos and Miller594

(2011). Our model demonstrates that the PFC can be trained by the BG to develop useful internal595

representations for completing a prototype distortion and a simple, but real-world face categorization596

task. As this learning is generic it may also provide the basis of other category learning tasks, although597

some of them may recruit additional or slightly different brain areas (Seger and Miller, 2010; Richler and598

Palmeri, 2014) and may therefore require more complex models.599
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As the BG form multiple loops with most parts of cortex (Alexander et al., 1986; Haber, 2003) our600

model could provide an inspiration for the organization of other loops as well. A further challenging and601

unanswered question is how different cortical areas connect with each other across loops. The organization602

of connections in early sensory areas may be approximately well explained by Hebbian learning. Cortico-603

cortical areas further downstream likely require error signals and fast learning BG circuits to bias cortex604

in a meaningful way so that brain circuits self-organize to find solutions that allow the organism to605

survive, reproduce and evolve. Hélie et al. (2015) already suggested that the BG are required for learning606

such cortico-cortical associations. Our study provides an example of how this may actually work and607

may offer a blueprint for the organization of other cortico-cortical associations.608
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Figure Legends716

Figure 1. Outline of the components of the neuro-computional network to train the cortico-cortical,717

IT-PFC connection by the basal ganglia (BG). All adaptive connections are displayed in green color.718

While the IT-PFC connections are updated by Hebbian learning, the BG learn based on a three factor719

learning rule including a reward prediction error signal (DA). We propose that the BG bias the activity720

of PFC neurons which allow the PFC to learn a categorical representation. IT: inferior temporal cortex.721

PFC: prefrontal cortex. Striatum D1 and Striatum D2: striatum cells expressing D1 and D2 dopamine722

receptors, respectively. STN: subthalamic nucleus. SNr: substantia nigra pars reticulata. GPe: external723

globus pallidus. VA: ventral anterior nucleus of the thalamus.724

Figure 2. Image examples and block description of the prototype distortion task. a) Dot prototype725

stimuli of two categories, taken from one experimental run. b) Number and type of stimuli per block.726

Stimuli are distinguished according to whether they are added in the previous block or in the current727

block. c) Stimuli of the second block, derived from the prototypes.728

Figure 3. Examples of face stimuli presented to the model. The upper-row pictures correspond to the729

category of Bill Clinton, the lower-row pictures to the category of George W. Busch. Each picture730

shows a face with a particular expression and from a different perspective. Each greyscale image has a731

size of 100x100 pixels and was obtained by applying a Viola-Jones filter to a particular frame of a732

Youtube video.733
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Figure 4. Detailed outline of the components of the neuro-computional network. The number of cells734

that each neural population has is shown at the left-bottom corner of each population box. The reward735

prediction error signal used by the BG to learn is generated at SNc. SNc: substantia nigra pars736

compacta. StrThal: striatum with thalamic afferents. The rest of model nuclei are already specified in737

Figure 1 as follows. IT: inferior temporal cortex. PFC: prefrontal cortex. Striatum D1 and Striatum738

D2: striatum cells expressing D1 and D2 dopamine receptors, respectively. STN: subthalamic nucleus.739

SNr: substantia nigra pars reticulata. GPe: external globus pallidus. VA: ventral anterior nucleus of the740

thalamus.741

Figure 5. Model performance across blocks for categorizing novel stimuli averaged from 82639742

experiments. Since each block had a minimum of 16 trials (due to the criterion to succeed in a block),743

we analyzed only the first 16 trials per block. Applying a sliding three-trial window, we then measured744

the percentage of correct trials for each relevant trial across the all successful experiments (black line)745

and the corresponding standard error of the mean (SEM). The obtained SEMs are too small to be shown746

in this plot (smaller than 0.002) due to the large number of experiments considered in this analysis.747

Figure 6. Mean d’ sensitivity index for category selectivity of neurons in the model’s PFC and748

striatum. Horizontal and vertical axes refer to time and trials, respectively. The first phase represents749

the first two blocks, the second phase the next two blocks, and the last phase the last four blocks. Only750

successful experiments (82639 experiments) and successful trials of novel stimuli were considered in this751

analysis. The analyzed data spread across a time interval spanning from cue onset to reward onset.752

Each phase includes only its first 16 trials (i.e. 7 trial windows). Different values for the 64 model753

parameters were set at the beginning of each experimental run.754

Figure 7. Category and stimulus selectivity for each model cell in the striatum (red dots) and in the755

PFC (blue dots) in all successful experiments. Both selectivities were measured at the end of each block756

as outlined in the Methods section. The first block was omitted because there was only one stimulus per757

category and, therefore, stimulus selectivity could not be computed. A maximum category selectivity of758

1 indicates that the corresponding cell responds maximally to all stimuli of one category and becomes759

inactive for the stimuli from the other category. Maximum stimulus selectivity, in contrast, indicates760

that the corresponding cell responds to a single stimulus with maximum activity, but that it remains761

inactive for the rest of the stimuli from the same category. While the category selectivity in the PFC762
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clearly increases with each block the category selectivity in the striatum does not and cells stay stimulus763

selective. The mean category and the mean stimulus selectivity of the PFC and STR cells is shown at764

each axis by a blue and red triangle respectively. The error bars indicate the standard deviation.765

Figure 8. Firing rates of three typical striatal cells plotted across all trials of one experimental run -766

subdivided for presentation of stimuli from category A (left subplots) and category B (right subplots).767

The seven vertical lines indicate block borders. The 64 model parameters were set to their base values.768

Figure 9. Model prediction with respect to the individual components of the d’ sensitivity index of the769

striatum. The values are computed at the last trial-time bin of each phase and from the same770

simulation recordings used to obtain the STR d’ sensitivity index in Figure 6. a) Mean response to the771

preferred category (dots in magenta line, μP ) and to the non-preferred category (dots in green line, μN )772

per phase. The preferred category is the category for which each STR cell responds on average most773

strongly in each single trial-time window. b) Mean standard deviation of the response to the preferred774

category (dots in magenta line, σP ) and to the non-preferred category (dots in green line, σN ) per phase.775

Figure 10. Averaged d’ sensitivity index across trials and time for the PFC and the striatal activities776

recorded in a prototype distortion task without blocks. Horizontal and vertical axes refer to trials and777

time, respectively. The subplots on the left and right hand side belong to PFC and striatal recordings,778

respectively. Only successful experiments and successful trials of novel stimuli were considered in this779

analysis. The analyzed data spread across a time interval spanning from cue onset to reward onset. The780

64 model parameters were set to their base values in all considered simulations.781

Figure 11. Across-trial performance of the full model (dark red line) and the BG-alone model (dark782

blue line) across the 2500 trials of the task with real-world face stimuli. For each of the 2500 trials,783

performance was averaged across 100 experimental runs. Moreover, standard errors of the mean (SEM)784

were computed (filling color around the lines). A 25-trial window was employed to smooth the plot.785

The black dot in the final trial represents the mean performance of the PFC alone in an extra set of786

1000 trials, performed at the end of the 2500 trials, across 100 experimental runs. The corresponding787

SEM is 0.00065, too small for being shown in the plot as the dot’s error bar. The 64 model parameters788

were set to their base values in all considered simulations.789

Figure 12. Effect of different PFC learning speeds on the full model’s performance in the learning task790
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with real-world faces images. a) τSTR is the time constant of the learning rule in the striatum and was791

equal to 75 ms. τPFC is the time constant of the learning rule in the PFC and its different values here792

studied were 75, 975, 33375, 66675, and 100000 ms. Each red dot shows the mean performance across793

100 experimental runs at the last trial (trial 2500). The error bars show the corresponding SEMs. b)794

example (for each different condition) of PFC weight trajectory (red line) and STR weight trajectory795

(blue line) across the trials of one experimental run. The weight value was normalized via dividing by796

the maximum weight value of the recorded PFC and STR cells. In all considered simulations, the 64797

model parameters were set to their base values except for the learning rule time constant in the PFC,798

which was set to the value specified by each condition.799

Figure 13. Across-trial performance of the full model (dark red line), the full model with an extra800

connection from the PFC to the STR (dark blue line), and a model with the slow learning in the STR801

instead of the PFC (gold line) across the 2500 trials of the task with real-world face stimuli. For each of802

the 2500 trials, performance was averaged across 100 experimental runs. SEMs are also shown (filling803

color around the lines). A 25-trial window was employed to smooth the plot. The 64 model parameters804

were set to their base values in all considered simulations. The small model sketch summarizes the main805

difference between the three models.806

Figure 14. Analysis of the individual components of the striatum d’ sensitivity index computed from807

the monkeys’ recordings obtained in the cue period. For each phase, the last trial-time bin is plotted. a)808

Mean response to the preferred category (dots in magenta line, μP ) and to the non-preferred category809

(dots in green line, μN ) per phase. The preferred category is the category for which each STR cell810

responds on average most strongly in each single trial-time window. Because neural spiking activity811

tended to rise with time of recording, we had to correct the neural firing rate to the pre-trial baseline,812

hence, the negative average firing rate for the non-preferred category. b) Mean standard deviation of813

the response to the preferred category (dots in magenta line, σP ) and to the non-preferred category814

(dots in green line, σN ) per phase.815
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