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SUMMARY

Learning from experience requires knowing whether
a past action resulted in a desired outcome. The
prefrontal cortex and basal ganglia are thought to
play key roles in such learning of arbitrary stimulus-
response associations. Previous studies have found
neural activity in these areas, similar to dopaminergic
neurons’ signals, that transiently reflect whether a
response is correct or incorrect. However, it is
unclear how this transient activity, which fades in
under a second, influences actions that occur much
later. Here, we report that single neurons in both
areas show sustained, persistent outcome-related
responses. Moreover, single behavioral outcomes
influence future neural activity and behavior: behav-
ioral responses are more often correct and single
neurons more accurately discriminate between the
possible responses when the previous response
was correct. These long-lasting signals about trial
outcome provide a way to link one action to the
next and may allow reward signals to be combined
over time to implement successful learning.

INTRODUCTION

Both the lateral prefrontal cortex (PFC) and the caudate nucleus

(Cd) of the basal ganglia have been implicated in learning

abstract associations. Anatomically, these two regions are

extensively interconnected with each other and the rest of the

brain, including sensory, motor, and higher-level associational

areas (Wise et al., 1996; Passingham, 1995; Fuster, 1997;

Petrides and Pandya, 2006, 2007). They are thus well-positioned

to control complex behavior. Frontal cortical areas and basal

ganglia nuclei are interconnected in parallel ‘‘loops’’ (Houk and

Wise, 1995; Alexander et al., 1986, 1990; Middleton and Strick,

2000), suggesting close interaction during their function. Further,

the deactivation or manipulation of neural function in these two

areas affects learning behavior, showing both areas to be neces-
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sary for learning (Petrides, 1985, 1994; Gaffan and Harrison,

1989; Murray et al., 2000; Nakamura and Hikosaka, 2006b;

Miyachi et al., 1997; Williams and Eskandar, 2006; Nakamura

and Hikosaka, 2006a; Fellows and Farah, 2005).

Neurophysiological studies in the PFC and Cd have also linked

neuronal responses in both areas to flexible learning. These

studies have demonstrated that information about the stimuli,

behavioral responses, and association between the two are

encoded by neurons in the PFC and Cd (Asaad et al., 1998;

Pasupathy and Miller, 2005). During such learning, moreover,

PFC and Cd neurons modify their activity to more strongly reflect

this acquired knowledge about the learned association (Chen

and Wise, 1995; Pasupathy and Miller, 2005; Asaad et al.,

1998; Barnes et al., 2005; Murray et al., 2000). Finally, activity

of many PFC and Cd neurons reflect task outcome or the delivery

of reward—another important piece of information critical for

guiding learning. Learning depends on using feedback from

the environment about the outcome of actions, and in the labo-

ratory this feedback is typically the delivery of a food reward

for desired (correct) behavior. Neural signals related to reward

are closely associated with the midbrain dopaminergic system,

whose neurons fire transiently in relation to reward delivery

(Ljungberg et al., 1992; Schultz et al., 1993a). These neurons pro-

ject to many brain areas, but they strongly innervate the basal

ganglia and the PFC (Anden et al., 1966; Berger et al., 1988;

Williams and Goldman-Rakic, 1993). Unsurprisingly, then, PFC

and basal ganglia (BG) neurons have been found to show activity

after reward delivery and behavioral response feedback (Schultz

et al., 1993b; Schmitzer-Torbert and Redish, 2004; Barraclough

et al., 2004; Barnes et al., 2005; Apicella et al., 1991; Ichihara-

Takeda and Funahashi, 2006; Watanabe, 1989; Lau and

Glimcher, 2007; Seo et al., 2007).

Thus, in the PFC and BG, neural correlates of both outcome

and learning have been documented, but it is still unclear how

these interact and whether the outcome-related signals are

used to modify neural activity and behavior. This is because

reward-related activity occurs at the end of the trial and has

mainly been reported to be quite transient. Reward responses

last just a few hundred milliseconds after the delivery (or with-

holding) of the reward (Lau and Glimcher, 2007), whereas the

next opportunity for behavior (i.e., the next behavioral trial) and
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Figure 1. Behavioral Task

(A) Schematic of the associative learning task. Animals were required to learn, by trial and error, an arbitrary association between a picture cue and a directional

eye movement response. On each trial, they held their eye position on a central fixation point for 800 ms, and then the cue was turned on for 500 ms. After

a 1000 ms memory delay period, the fixation point was extinguished, and the animals made their response; the correctness of the response was signaled imme-

diately after the saccade (see Experimental Procedures). After animals had learned this association, we reversed the pairing with no explicit signal, and animals

relearned the reversed association.

(B) Average learning curve, showing performance before and after reversal. x axis: trial number; at trial 0, the association was reversed with no signal, almost

always causing an error (trial 1). Within a few trials, performance reverted to near 50% and then gradually increased as animals learned the new pairing. Error

bars: SEM.
the associated task-related neural activity are typically seconds

away. Thus, it has been unclear how such temporally disparate

signals interact, though several ideas have been put forth, espe-

cially in the context of neuroeconomics (e.g., Rangel et al., 2008;

Montague and Berns, 2002; Rushworth and Behrens, 2008;

Doya, 2008). Specifically, in the frontal cortex, some studies

show that past reward history can modulate task-related activity

(Barraclough et al., 2004; Uchida et al., 2007; Seo et al., 2007;

Seo and Lee, 2009). In the hippocampus, this has been seen in

some outcome-modulated neurons (Wirth et al., 2009). However,

little is known about the transient versus sustained nature of

outcome-related single neurons in learning tasks, and the role

of the basal ganglia has not been explored.

How neurons encode trial outcome—transiently or by sus-

tained firing—has important implications for the mechanism of

learning. Prior work has suggested two ways that learning might

occur. First, the outcome of previous trials could be stored in

synaptic strengths, represented by a connection weight in a

neural network model. The transient responses to reward would

then be used to change synapses after each trial, affecting on the

next trial only neurons’ excitability or responses (Barraclough

et al., 2004; Sugrue et al., 2005). This would be supported by

transient reward responses. However, there is a second possi-

bility: the outcome of each trial might be stored in the sustained

firing patterns of the neurons. Then, the dynamic state of the

network could store the learned association without any required

change in synaptic strength (Maass et al., 2002; Ganguli et al.,

2008). Outcome-related activity sustained until the next trial

could then be combined with the learned representations to

select the next action. This latter model predicts that sustained

neural firing related to outcome should be observed between

trials and the learning induced changes will be evident on the

next trial. But until now, no such sustained reward-related firing

has been observed in these areas.

Here, we report data that support this second model, shed-

ding light on the neural mechanisms linking environmental feed-
back to neural plasticity by showing that learning can indeed be

implemented by changes in network state. As animals learned

associations between visual stimuli and saccade responses,

we studied the responses of neurons in the PFC and Cd. We

found that the activity of many neurons in the PFC and Cd

reflects the delivery or withholding of reward (i.e., whether a trial

was correct or incorrect). This activity can be sustained, and we

observed that it often lasts for several seconds, the entire period

between trials. Finally, we found that the outcome of a single trial

also did impact the neural representation of the learned associ-

ation, as if information about outcome was being combined with

task information to cause learning-related changes. Response

selectivity was stronger on a given trial if the previous trial had

been rewarded and weaker if the previous trial was an error.

This was independent of whether the animal had just begun to

learn the association or was already quite good at it. Together,

these results describe how learning in PFC and Cd is shaped

by behavioral outcome signals.

RESULTS

In order to assess how outcome signals could be used to guide

learning, we trained animals to perform an associative learning

task. Animals learned arbitrary associations between each of

two picture cues, both new each day, and a leftward or rightward

eye movement response (Figure 1). The task and behavioral

performance are described in detail in Pasupathy and Miller

(2005). Animals learned the association by trial and error, and

once they were performing well (>90% on each picture; see

Experimental Procedures), the associations were reversed

without any explicit cue. By repeatedly reversing the associa-

tions, we could examine multiple instances of learning and re-

learning. Animals performed at least three reversals during

each recording session.

We found that the activity of many neurons reflects the behav-

ioral outcome (correct versus error) in both the PFC and Cd.
Neuron 63, 244–253, July 30, 2009 ª2009 Elsevier Inc. 245
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Figure 2. Cells Signal Correct or Error Outcome

(A1–A3) Single cell recorded from the PFC showing an increase in firing rate after the correct outcome was signaled. All three panels show data from the same set

of trials. X axes: time from correct/error feedback signal. Top panel (A1): trial raster; each tick corresponds to a spike. Each row is a different trial; blue ticks,

response times (end of saccadic eye movement); trials are sorted by response time within each of the four trial groups. Middle panel (A2): histogram of the

same trials. Firing rates (colored lines) were computed by convolving the spike trains in (A1) with a 140 ms square kernel. Gray lines: 1 SEM. Bottom panel

(A3): information that this cell gives about correct versus error at each time point, measured as area under ROC curve (y axis).

(B1–B3) A second cell from Cd that exhibits a similarly strong increase in firing rate on correct trials.

(C1–C3 and D1–D3) Single PFC and Cd cells showing sustained responses about reward versus error that lasted for several seconds into the next trial. Conven-

tions are as in (A) and (B).

(E) Population summary. y axis: mean reward information (reward ROC area) over the population of cells from each area. Blue, PFC mean (n = 85; see Experi-

mental Procedures); red, caudate (n = 94). Gray lines: 1 SEM. x axis: time from correct/error feedback signal. Dotted lines indicate baseline information main-

tained from previous trial (see Discussion); elevation above this level shows additional information gained by neurons because of a single trial’s reward. Left panel:

data aligned on reward onset; right panel: aligned on the next trial’s fixation onset (note intertrial period length for errors: 6.5 s; for corrects: 5.5 s). The population

of recorded cells from both areas signals whether single trials are correct or incorrect, and this information is maintained until the next trial.
Single neurons in both the PFC (Figure 2A) and Cd (Figure 2B)

show immediate changes in activity based on whether the

behavioral response was correct or an error. Some neurons

show an increase in activity after corrects (Figure 2, left column)

while others show an increase in activity after errors (Figure 2,

right column). In the PFC and Cd, both types of responses are

roughly equal in number (greater for correct: 54%, 101/186 in

Cd; 47%, 112/237 in PFC; among cells modulated by outcome

in the first 500 ms after response, at p < 0.05 via nonparametric

ANOVA; see also Figure S3 available online).
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PFC and Cd Neurons Maintain Outcome Information
in Sustained Activity
Neurons in both the PFC and Cd are known to show transient

responses to rewarding stimuli (e.g., Schultz et al., 1993b).

However, it is not known how information about previous actions

might be carried in the brain from one trial to the next, so that it

can be used in learning. We found that many neurons in both

PFC and Cd carry this sustained information. Single neurons in

both areas convey strong, sustained outcome information

across the entire 4–6 s intertrial interval (Figures 2C and 2D).
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Figure 3. Direction Signal Is Stronger when Previous Trial Is Correct: Single Cells

Left panels (A1–A4): single PFC cell showing increased direction selectivity after previous trial was correct versus when the previous trial was an error. (A1) Trial

raster; conventions as in Figure 2A1. Trials are arranged by the response direction the animal chose on a given trial and the correct/error status of the previous

trial. (A2) Histogram of firing rates, conventions as in Figure 2A2. (A3) Information carried by this cell (measured by ROC area) about the correct versus error

outcome of the previous trial, averaged over response direction of the current trial. (A4) Information (ROC area) about the response direction of the current trial,

plotted in green when the previous trial was correct and red when the previous trial was an error.

Right panels (B1–B4): a single cell recorded from the caudate nucleus; conventions are as in (A1)–(A4). Both cells give more information about the animal’s

intended response (i.e., ROC area is larger) when the previous trial was correct.
We used a tuning index, computed from the area under

a receiver operating characteristic (ROC) curve, to quantify the

outcome information carried by different neurons in the popula-

tion. To measure the time course of the outcome-related se-

lectivity, we computed this index in a sliding time window,

200 ms long (Figure 2, bottom panels: A3, B3, C3, and D3). If

outcome-related selectivity is low, a neuron’s firing will be iden-

tical after correct and after error, and the ROC area will be 0.5. In

contrast, if a neuron perfectly encodes whether a response is

correct or not, the ROC area will be 1. This analysis showed

that sustained information about outcome is present in an

average over the population in each brain region (Figure 2E).

Further, we found that information about outcome peaks shortly

after the reward and lasts until the next trial. In summary, we

found that in both PFC and Cd, neurons carry information about

the outcome of previous trials until the next trial, where this signal

is available for guiding the animals’ next response.

Single Correct Responses Increase Direction Selectivity
on the Next Trial
We also found that the outcome of one trial strongly impacts how

much information neurons carry on the next trial about the

learned association. We have previously shown that in this task,

PFC and Cd responses carry association information through
selectivity for the direction of the learned response (Pasupathy

and Miller, 2005). Here, we describe how this direction selectivity

on a given trial is altered by the outcome on a preceding trial.

Specifically, we found that a correct trial increases direction

selectivity on the next trial, while incorrect trials reduce it

(Figure 3). An example PFC neuron (Figure 3A1) illustrates these

effects. This neuron reflects both the outcome of the previous trial

and the learned direction response. These effects are quantified,

respectively, by an outcome ROC (Figure 3A3) and a direction

ROC (Figure 3A4). The neuron fires at a higher rate when the

previous trial is correct than if it was an error. Simultaneously, it

encodes the learned association—it also fires more when the

upcoming saccade is rightward than leftward. And the strength

of the association selectivity depends on the outcome of the

previous trial, because after a correct response this selectivity

is stronger. An illustrative example from the Cd (Figure 3B) also

shows stronger direction selectivity after a correct behavioral

response. In these neurons, (1) information about the outcome

from the preceding trial is available on the subsequent trial, and

(2) neural activity that reflects the upcoming learned behavior is

modulated by the previous trial’s outcome.

This increase in direction selectivity after a correct trial is seen

across the population of recorded neurons (Figure 4). For both

areas, there was significantly greater direction selectivity when
Neuron 63, 244–253, July 30, 2009 ª2009 Elsevier Inc. 247
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Figure 4. Direction Signal Is Stronger when Previous Trial Is Correct: Population Summary

(A) Averaged direction ROC values for all PFC cells when the previous trial was correct (solid blue line) versus previous error (dotted blue line). Black lines: 1 SEM.

x axis, time in trial; y axis, average ROC value.

(B) Averaged direction ROC values for all Cd cells; conventions as in (A). For both areas, information about direction is stronger after a correct trial than after an

error trial.

(C and D) Distribution, over all cells, of the difference in ROC value after correct and after error. For each cell, we subtracted the delay period direction ROC value

after correct trials from that after error trials. (C) Blue, PFC cells. (D) Red, Cd. The distributions are significantly shifted to the right (PFC: p < 10�7, Cd: p < 10�8,

Wilcoxon test), showing stronger direction tuning after correct trials.

(E) Behavioral performance on the next trial after a correct or error trial. Error bars: standard deviation over 63 experimental sessions. Performance was much

higher when the previous trial was correct than when the previous trial was an error.
the previous trial had been correct than when it had been

incorrect (Figures 4A and 4B). We also quantified this effect for

each neuron by subtracting the mean ROC value for the cued

saccade direction when the previous trial was incorrect from

that when the previous trial was correct. Across the population

in both areas, these differences are positive (p < 0.001 in both

cases; sign test for nonzero median), showing greater selectivity

for the cued saccade direction if the previous trial had been

correct (Figures 4C and 4D; see also Supplemental Results).

Increases in accuracy after correct trials were also reflected in

the animals’ behavior: performance on a given trial is more likely

to be correct if the previous trial was correct than if it was incor-

rect (Figure 4E).

We used the area under the direction ROC curve to quantify the

neural changes that accompany learning. In our past work (Pasu-

pathy and Miller, 2005), we separated neural selectivity into cue,
248 Neuron 63, 244–253, July 30, 2009 ª2009 Elsevier Inc.
response direction, and association components by partitioning

the total variance, using a two-way model for cue and direction

with an interaction term. (Thus, association selectivity is princi-

pally the degree to which neurons simultaneously encode cue

and response direction; cf. Pasupathy and Miller, 2005; Asaad

et al., 1998). Here, we used ROC area for direction because it

captures, in a single measure, selectivity for the learned response

and also the majority of association selectivity, both of which

change over learning. We also repeated our past methods to

examine direction and association selectivity separately and

found that bothshow the same effects aswhen they are combined

in the direction ROC area. They each show stronger tuning after

correct trials, and weaker tuning after errors (Figure S5).

Thus, we found that single behavioral responses have strong

effects on both animal behavior and neural activity—a correct

trial strengthens both neural selectivity and the probability of
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a correct behavioral response, while after an error both are much

nearer to chance performance.

Behavioral Accuracy Is Improved after a Correct
Response
The outcome of a single trial influences direction selectivity on

the next trial. However, animals’ behavioral performance

improves slowly with learning. Thus, in theory it might be

possible that the effect of a single trial on the next trial’s response

was due merely to these slow changes. This was unlikely due to

the large changes caused by a single correct or error trial (Fig-

ure 4), but we confirmed that it was not the case by comparing

performance both early and late in learning (Figure 5). The

increase in selectivity when the previous trial is correct is seen

during the first half of a block of learning trials, when many errors

are made, as well as on the second half, when performance was

better and fewer errors are made. On error trials, direction selec-

tivity is smaller and thus closer to what would be expected by

chance. The fact that reversals are not accompanied by an

explicit cue probably encouraged the animals to favor a trial

and error strategy, where error trials often resulted in guessing

on the next trial (see Discussion). The behavioral impact of

a single trial’s outcome was also seen at the start and end of

learning: in the first ten trials after reversal, animals made 72%

correct responses on trials after corrects and 53% following

errors, while in the last 20 trials, animals perform at 92%

following corrects and 57% following error trials.

A Weaker Signature of Outcome Can Persist Beyond
Single Trials
We report above how each trial’s outcome affects direction

selectivity on the next trial. While this was the strongest effect,

we also observed a weaker signature of changes arising from

more than one trial in the past. For example, one might expect

a cluster of correct trials to result in greater direction selectivity

than one correct trial preceded by several error trials. This can

be seen in the population data (Figure 2E). There is an elevated

baseline outcome ROC before the time of the response (red

and blue dotted lines elevated above chance level, 0.5). When

A B Figure 5. Increases in Direction Selectivity after Correct

Trials Occur Both at the Start and End of Learning

y axis, the delay period direction selectivity (area under ROC curve)

of all cells in the population after correct trials (middle bars) and

after error trials (right bars). Each repetition of learning, from one

reversal to the next, was divided into two sets of trials; the first

half are shown as dark gray bars (‘‘start of learning’’), and light

gray bars show the second half (‘‘end of learning’’). The ROC

area from the fixation (baseline) period is shown at left.

(A) PFC neurons; (B) Cd. These data show that the increases in

direction selectivity after a correct trial exist both early and late

in learning.

Error bars are 1 SEM.

we repeated the analysis with random reassignment

of the current trial’s correct and error status, this

effect was still present (data not shown). However, it

fell to chance when we reshuffled trial numbers,

which breaks the link between trials nearby each

other in time. (We held numbers of trials in each group constant

to avoid spurious changes due to ROC bias; see Figure S2 for

related ROC controls.) This implies that it is not merely due to

the statistical structure of the spike trains we recorded but

was a true signature of neurons that reflect behavioral

outcomes over more than one trial. Despite the presence of

this weaker multitrial effect, a single trial produces an increment

in this long-term information (difference between solid and

dotted lines in Figure 2E). Furthermore, the magnitude of the

single trial effect is at least as large as all the multitrial effects

summed together (difference between dotted lines and 0.5

level).

Transient Outcome Effects Are Large
The transient outcome responses shown by prefrontal and

caudate neurons have received relatively little emphasis (but

see Lau and Glimcher, 2008; Fujii and Graybiel, 2003), though

these responses are quite large. More precisely, the large ROC

value for transient correct and error responses indicate that the

neurons carry a large amount of information about correct versus

error. Because we use the same ROC analysismethod to examine

both outcome and direction information, we can compare the

relative strength of these effects (Figure S1). The transient

outcome ROC often shows a value between 0.7 and 0.9 (Figures

S1B and S1C), similar to the direction ROC during the saccade

(Figure S1C) and larger than the other information these neurons

represent (Figures S1A and S1B). Thus, whether the transient

outcome signal reflects mainly input or local processing, its

strength implies it is an important signal in these two areas.

DISCUSSION

Here, we report two main results. First, in a learning task, neurons

in the PFC and caudate nucleus show sustained activity

that reflects a trial’s correct or incorrect status, which lasts until

the next trial. Second, the neural representation of the learned

information in this task is changed by a single trial’s outcome:

correct trials improve the strength of direction selectivity on the

next trial.
Neuron 63, 244–253, July 30, 2009 ª2009 Elsevier Inc. 249
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Implication for Learning Models; Relation
to the Dopamine System
There are at least two ways that the brain might store informa-

tion for seconds or longer about behavioral outcome. At these

timescales, information might reside in changes in the strength

of synaptic connections, resulting in different sized responses

to future stimuli. Or, it might be stored in the activity of the

neurons, maintained by sustained neural firing rate. Demon-

strating the feasibility of both methods, neural network models

have been devised that use each method for information

storage (Hopfield, 1982; Rumelhart et al., 1986; Maass et al.,

2002; Drew and Abbott, 2006; Ganguli et al., 2008). Previously,

mainly transient reward responses had been reported in the

frontal cortex and basal ganglia (Schultz et al., 1993b; Schmit-

zer-Torbert and Redish, 2004; Barnes et al., 2005; Apicella

et al., 1991; Ichihara-Takeda and Funahashi, 2006; Watanabe,

1989; Lau and Glimcher, 2007, 2008; though note that modula-

tion of frontal lobe task responses can depend on reward

history: Barraclough et al., 2004; Uchida et al., 2007; Seo et al.,

2007; Seo and Lee, 2009), and similarly transient responses

have been seen in the dopamine system of the basal forebrain,

which sends strong connections to the areas we studied. Thus,

because transient responses were seen in the frontal lobe, the

basal ganglia, and in dopamine neurons, prior work suggested

that the ‘‘synaptic strength’’ hypothesis might be the mechanism

for storing information about past responses (Jackson et al.,

2006). This was also supported by observation of task-related

modulation by reward (Barraclough et al., 2004; Seo et al., 2007;

Uchida et al., 2007). But learning seemed to be too fast to result

from synaptic changes. While there are ways that synaptic

strengths can vary transiently (through synaptic depression or facil-

itation, e.g., Thomson and Deuchars, 1994; Tsodyks and Markram,

1997), long-lasting synaptic changes require protein synthesis

(Frey et al., 1996) and therefore take tens of minutes to occur. If

synaptic changes did underlie this learning, it had not been ex-

plained how such fast yet long-lasting changes might occur.

Thus, there has been an inconsistency in our understanding of

the mechanism for learning in these areas: the types of changes

thought to be required took much longer than the time available

to make them. Consistent with models that have proposed how

network state can store memories (Maass et al., 2002; Ganguli

et al., 2008), our data demonstrate that this can be seen in the

sustained activity of single neurons.

Note that while we found sustained firing rate changes, it is

possible that learning also results in synaptic changes. In fact,

the ability to remember associations over hours, days, or longer

almost certainly requires a remodeling of connection strengths

somewhere in the brain. However, given that frontal cortex is

known to show sustained changes in activity in memory tasks

(Fuster and Alexander, 1971; Funahashi et al., 1989) and other

complex tasks (Fuster et al., 2000; Wallis et al., 2001), it is consis-

tent with our understanding of these areas that sustained rate

changes also encode outcome information. Having both

outcome and direction information available puts the frontal

cortex and basal ganglia in an excellent position to combine

them and thus perhaps guide synaptic strength adjustments,

so that both types of changes may coexist during learning.

Because all information relevant to the task is present in both
250 Neuron 63, 244–253, July 30, 2009 ª2009 Elsevier Inc.
areas, they may be the principal place where such learning is

instantiated.

Sustained outcome responses fill a gap in our knowledge of

the neural responses necessary for learning. The transient and

sustained responses are, however, likely to be intimately related.

For example, the transient responses may trigger sustained

responses. Two recent studies (Williams and Eskandar, 2006;

Nakamura and Hikosaka, 2006a) support this idea. Microstimu-

lation of the striatum led to improvements in learning, and more-

over, these improvements were seen only when the microstimu-

lation occurred at the time of the reward. It may be that these

transient outcome responses reflect a large input from the dopa-

mine system, and microstimulation applied at the time of the

outcome signal interferes with the transformation of this dopa-

mine input into the sustained changes we observed. This kind

of transformation has recently been reported in PFC in vitro by

Sidiropoulou et al. (2009), who found that dopamine inputs can

depolarize single neurons, leading to sustained firing rate

changes. While we saw this type of sustained activity, we found

roughly equal numbers of neurons that increase firing to correct

(when dopamine neurons typically increase activity) as increase

firing to error (when dopamine neurons typically decrease

activity). But dopamine has also been reported to inhibit frontal

neurons’ firing (Otani et al., 1999), and depolarization by dopa-

mine may also trigger recurrent network mechanisms, possibly

in frontal-basal ganglia loops (Alexander et al., 1990), which

inhibit some neurons and excite others.

Our Results Cannot Be Explained by Drift/Baseline
Changes
One potential concern might be that long-term changes in

neuronal activity over many trials might affect our results,

whether due to baseline activity changes or possible changes

in position of the electrode relative to the neuron. To deal with

this issue, we included neurons in the analyses only if the

neuron’s activity was stable while the animal performed at least

four repetitions of learning—i.e., the animal first learned one pair-

ing followed by three reversals of the pairing, each of which the

animal learned to the behavioral criterion level. Thus, long-term

changes in the neurons’ activity would tend to affect all types

of trials equally, ruling out spurious effects where neurons would

appear to respond to one stimulus or direction due to drift. Also,

we corrected for bias in the ROC area by shuffling trials randomly

(e.g., in Figure 2E; see Experimental Procedures; Figure S2).

Since this method intermixed trials at the beginning and end of

the recording sessions, it also controls for any effect of long-

term drifts in activity.

Transient Outcome Responses: Pure Reward
Responses?
Animals can and often do learn given only secondary reinforce-

ment that is not in itself a reward (Pavlov, 1927). As an example,

human students will study for an exam in order to much later earn

a high salary. Here, we study only how a trial’s outcome yields

future changes in behavior and in neural activity. Because the

exact nature of the stimulus used to provide feedback is not

important for the changes we study, we have not examined

whether the transient end-of-trial responses are associated



Neuron

Sustained Outcome Responses in PFC and BG
with the primary or secondary reinforcement stimuli (cf. Wirth

et al., 2009). This is because, in either case, the signal is likely

to arise from the midbrain dopaminergic system, whose neurons

have been shown to fire in response to both types of reinforcers

(Schultz et al., 1993a). Specifically, dopamine neurons code for

reward predictions, and they begin to fire in response to many

sorts of secondary reinforcers when these reinforcement stimuli

predict future rewards (Schultz, 1998). Thus, whether these

neurons fire for reward alone or for trial outcome, they strongly

encode information about a key element of learning: whether

responses were correct or incorrect.

Relation to Previous Work
Other laboratories have studied similar effects in other task

contexts. Lee and colleagues (Barraclough et al., 2004; Seo

et al., 2007; Seo and Lee, 2009) have demonstrated that past

history of reward can modulate the task-related responses of

neurons in a mixed-strategy game. They have found these effects

in several frontal lobe areas, including the supplementary eye

fields (also called the dorsomedial frontal cortex, or DMFC), the

cingulate cortex, and the PFC. These studies, however, did not

closely compare transient and sustained outcome-related activity

(though they have found some signatures of this; e.g., see Figure 6

of Seo and Lee, 2009). Wirth et al. (2009) studied the hippocampus

and identified neurons that show outcome-related activity and

also change their task-related responses based on prior outcome

(cf. Figure S1). Narayanan and Laubach (2008) saw outcome-

related effects in rat frontal but not motor cortex. Taken together

with our work, these studies suggest that the effects we observed

reflect general mechanisms for learning that are present in many

learning-related brain areas. Future studies are needed to ex-

amine how information flows between these structures.

We have previously (Pasupathy and Miller, 2005) described

how direction and cue selectivity evolves with learning. The

present study explores a number of new phenomena. First,

this report examines outcome-related signals. Second, we

show here how single trials impact the strength of information

about the task. Our prior work focused on the time course of

selectivity, comparing latency of direction selectivity near the

beginning (right after a reversal) and the end of learning (just

before the next reversal). Here, we look at how the strength of

direction selectivity on a single trial is affected by the trial that

immediately precedes it, no matter if it is at the start or end of

each block. In fact, we show that the single-trial effect is only

weakly affected by the position in the block (Figure 5). While

apparently at odds, these two effects are complementary.

Because learning results in more and more correct trials, there

are fewer error trials at the end of learning than at the beginning.

We find that a single error trial has a constant effect on the next

trial no matter where it occurs, and that the accumulation of them

at the beginning of a block produces the average effect we previ-

ously reported.

But why should neurons weight error trials at the start and end

of learning similarly? We expected that the animal would obtain

much more information from early than late error trials, as early

error trials were key to relearning the reversed association. We

think that this is explained by the strategy the animals used. In

this task, reversals occurred with no explicit cue. Because each
error trial, especially at the end of learning, might have signaled

a reversal, it makes sense to attempt a few guesses after an error,

no matter where it occurred, to determine if a reversal had

happened. Under the task constraints we imposed, this was

a rational behavioral strategy (see also Fusi et al., 2007).

Both behavior and neural responses were more accurate after

correct than error trials. This suggests that the animals learned

more from correct trials than mistakes; in other words, a correct

trial told the animal more about how to make future responses

than an error trial. While this may be a strategy specific to this

task, it may also be a more general strategy for animal learning

that bears future investigation.

Conclusion
The results reported here show that these two areas, previously

known to show learning-related changes, also have full informa-

tion available to them to do all the neural computations neces-

sary for learning. Here, we have shown that cells show robust

signals about the outcome of behavioral responses, and that

these persist between trials. Furthermore, after a correct trial,

cells increase their selectivity for the association to be learned,

and likewise decrease it after an incorrect trial. This may repre-

sent a single-trial snapshot of the learning process—how single

cells change their responses in real time as a result of information

about what is the right action and what is the wrong one.

EXPERIMENTAL PROCEDURES

Behavioral Task

Animals began each trial by fixating a central spot for 800 ms, followed by the

appearance of the picture cue for 500 ms and then a 1000 ms memory delay

period. The end of the delay was signaled by the disappearance of the fixation

spot and the appearance of two identical saccade target spots, one on the left

and one on the right. Animals made a saccadic eye movement to one of the

two possible saccade targets. Animals had to learn, by trial and error, an arbi-

trary association between the two cues and the two possible responses. After

animals could perform the association well (after at least 30 correct responses

and 90% correct trials over the previous ten trials for each cue), the association

was reversed with no signal, and they had to relearn the new association.

Perhaps because there was no explicit signal, so that any error might signal

a reversal, the animals relearned the association slowly after reversal (Figure 1).

Each recording session consisted of three to eight reversals (four to nine trial

blocks). By requiring animals to repeatedly relearn the associations, we could

dissociate learning-related effects from artifactual effects that resulted from

slow shifts over the course of a session, related, i.e., to motivational changes

or changes in the position of the electrode relative to a neuron.

The cues were complex color images and were new for each recording

session so that animals had no prior response associated with a cue. Two

other sets of cues, both with nonreversing cue-response associations, were

intermixed with the two reversing cues (total six cues), a set of highly familiar

cues which were unchanged from day to day, and a set which were new

each session. Data presented here come from the first set of novel cues

with reversing associations only.

When animals made the correct response, they received drops of juice

paired with a tone for each drop. The first tone and drop began 100–130 ms

after a correct saccade was completed. The next trial began in 5.5 s. If a correct

response was made, the saccade targets were left in place for 500 ms to

provide a fixation target and reduce postreward saccades. If an incorrect

response was made, a visual error stimulus (a large red square) was displayed

during an additional 1 s delay before the start of the next trial. A black screen

occupied the remaining interval (final 5–5.5 s) between trials. The time of

outcome feedback was defined as the time of the beep for correct and the

time of red square onset for error trials. To ensure that the slight difference
Neuron 63, 244–253, July 30, 2009 ª2009 Elsevier Inc. 251
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in interval between trials (correct: 5.5 s, error, 6.5 s) did not affect our results,

we computed outcome measures both forward from the end of each trial and

backward from the start of the next (Figure 2E). This did not change the effects.

Data Analysis

The recording methods used here are described in Pasupathy and Miller

(2005); the data set described there is the same set used here. All recording

and animal procedures were in accordance with US National Institute of Health

(NIH) guidelines and were conducted under the guidance of MIT veterinary

staff and with the approval of the MIT Institutional Animal Care and Use

Committee.

We recorded all neurons with sufficiently large signals without preselecting

neurons for task-related responses like saccadic or visual responses (722 PFC

neurons, 597 Cd neurons). For population direction analyses (Figures 4 and 5),

we used the neurons that showed a significant effect of cue or of saccade via

ANOVA, as well as being stably recorded for at least three reversals—4

instances of learning (n = 350, PFC; 249, Cd). All directional analyses used

the actual saccade direction, not the cued direction on that block (identical

on correct trials but different if the response was an error). For the population

outcome ROC plot (Figure 2E), to compare effect magnitude across the time

of reward and the intertrial interval we used all neurons that showed a signifi-

cant effect of reward in both time periods, via nonparametric ANOVA (p < 0.05;

n = 94, PFC; n = 85, Cd. Number of cells significant at p < 0.05 in reward period

by itself: n = 237, PFC; n = 186, Cd; in intertrial interval: n = 125, PFC; n = 110,

Cd). The effect in each interval was qualitatively similar and remained signifi-

cant if we used all cells that were significantly modulated by reward in that

interval.

The histograms (Figures 2 and 3) were calculated by convolving the spike

train with a 140 ms square window. All ROCs were computed over a 200 ms

sliding window, which gave slightly more statistical power than a 140 ms

window. To compute the area under the ROC curve, for each neuron we

divided the set of trials into two groups, i.e., correct versus error for the

outcome ROC. Then, we constructed the ROC curve: the fraction of correct

decisions (‘‘hits’’) that an ideal observer would make versus incorrect deci-

sions (‘‘false alarms’’) as the threshold is varied (Green and Swets, 1966).

The area under this curve is the probability that an ideal observer successfully

chooses the correct trial condition given the firing rate on that trial and thus

gives a measure of overlap of the two firing rate distributions (e.g., Dayan

and Abbott, 2001). The ROC values we computed were similar between the

two animals and so for the population figures we pooled each animal’s data

together. Because there is no a priori preferred case for, e.g., reward versus

error (Figure S3), we rectified ROC values around 0.5. To correct for biases

in ROC values, we used a shuffle-corrector: for each cell and time point, we

randomly shuffled trials between the two groups and repeatedly recomputed

the ROC. Then, we subtracted the difference between the shuffled, random

value and 0.5 from the measured ROC. (See Figure S2 for further details.) Sup-

porting the validity of these procedures, we found that postcorrection, the

mean fixation-period direction ROC was 0.5 (Figures 4A and 4B); further, these

ROC results agreed with results found using a linear model (Figure S5).

The trial time periods were defined as follows. Transient selectivity after the

outcome feedback (‘‘reward period,’’ Figure S1) was computed from the time

of the correct or error feedback to 500 ms afterward. Outcome selectivity

lasting from one trial to the next (‘‘intertrial period’’) was computed 2–4000 ms

after the outcome feedback, and computing it from 2500 ms to 500 ms before

the start of the next trial produced nearly identical results. The cue period was

from the onset of the cue till its offset 500 ms later, and the delay period is

1000 ms long, from cue offset. The saccade period was chosen to cover

pre- and postsaccadic peaks (Bruce and Goldberg, 1985) and was defined

as from the offset of the fixation point signaling the beginning of the response

period to 500 ms later.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Figures and Supplemental Results

and can be found with this article online at http://www.cell.com/neuron/

supplemental/S0896-6273(09)00489-9.
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