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Rules through Recursion: 
How Interactions between the 
Frontal Cortex and Basal Ganglia 
May Build Abstract, Complex Rules 
from Concrete, Simple Ones 

Earl K. Miller and Timothy ]. Buschman 

The brain has evolved to deal with two competing requirements-it must 
respond quickly to familiar situations while being able to adapt to novel ones 
and plan for the future. Quickly responding to the immediate environment in 
a reflexive, or habitual, fashion is relatively straightforward: Familiar stimuli 
activate well-established neural pathways that produce stereotyped behav­
iors. This is so-called "bottom-up," or "stimulus-driven," processing. These 
behaviors can be executed quickly and automatically because they are "con­
crete"; they rely on specific stimulus-response relationships, and the same cue 
always elicits the same response. It is an axiom of neuroscience that such re­
flexive reactions are formed by repeated activation of neural pathways, which 
strengthens their connections. Then, they can be simply triggered-fired off 
in an automatic fashion, with little variation and, hence, little need for internal 
oversight. 

In contrast, truly sophisticated, goal-directed behavior requires a different 
mode of operation. Novel situations must be resolved, and goal direction re­
quires the ability to act on, not just react to, a familiar environment. Navigat­
ing complex si tuations to achieve long-planned goals cannot rely on uncoor­
dinated reactions. They must be orchestrated "top-down" from within oneself. 
By acquiring and building on knowledge of how the world works, we can 
predict what outcomes are desirable and determine what strategies will aid in 
attaining them. However, simply recording and replaying previous experi­
ences does not suffice. Relevant relationships need to be sorted out from spu­
rious coincidences, and smart animals get the "big picture" of the jigsaw puzzle 
of their experiences: They find the common structure across a wide range of 
experiences to form "abstract" rules-generalized principles that can be readily 
adapted to novel situations. These abstract rules are the overarching principles 
and general concepts that are the basis for high-level thought. They provide 
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the foresight needed for achieving distant goals; because abstract rules, by def­
inition, are generalized across many past experiences, they provide the basis 
for generalizing to (predicting) future events. 

The goal of this chapter is to review evidence that goal-directed behavior 
depends on interactions between two different "styles" of learning mecha­
nisms in different fronta l lobe systems. Specifically, we propose that ever more 
complex thoughts and actions can be bootstrapped from simpler ones through 
recursive interact ions between fast, reward-based plasticity in the basal ganglia 
(BG) and slower, more Hebbian-based plasticity in the frontal cortex. By 
having these two systems interact in recursive processing loops, the brain can 
learn new concrete relationships quickly, but also can take the time to link in 
more experiences and more gradually build up abstract, big-picture thoughts 
and sophisticated actions. 

AB STRACT RULES AND THE PREFRONTAL CORTEX 

Abstract rules lie at the center of the ability to coordinate thought and action 
and direct them toward a goal. Virtually all long-term, goal-directed behaviors 
are learned, and thus depend on a cognitive system that can acquire the rules 
of the game: what outcomes are possible, what actions might be successful at 
achieving them, what the costs of those actions might be, etc. Consider the set 
of rules invoked when we dine in a restaurant, such as "wait to be seated," 
"order," and "pay the bilL " These rules are long divorced from the specific 
circumstances in which they were learned and thus give us ·an idea about what 
to expect (and what is expected of us ) when we try a new restaurant. We have 
learned to generalize beyond specific experiences and construct a set ofabstract 
rules that direct behavior. These rules orchestrate processing in diverse brain 
regions along a common, internal theme. It is widely accepted that the pre­
frontal cortex (PFC)-a neocortical region that finds its greatest elaboration 
in humans-is centrally involved in this process. 

The PFC is situated at the anterior end of the brain and reaches its greatest 
elaboration and relative size in the primate, especially human, brain (Fuster, 
1995). Thus, it is presumably involved in our advanced cognitive capabilities 
and goal -directed behaviors. Indeed, recent imaging work has suggested that 
the size of the PFC is directly correlated with intelligence in ad ult humans 
(Haier et aI., 2004) . The PFC seems anatomically well situated to playa role in 
the creation and implementa tion of abstract rules. As shown in Figure 18-1, the 
PFC receives and sends projections to most of the cerebral cortex (with the ex­
ception of primary sensory and motor cortices), as well as all of the major 
subcortical systems, such as the hippocampus, amygdala , cerebellum, and most 
importantly for this chapter, the BG (Porrino et aI., 1981; Amaral and Price, 
1984; Amaral, 1986; Selemon and Goldman-Rakic, 1988; Barbas and De Olmos, 
1990; Eblen and Graybiel, 1995; Croxson et aI., 2005). The PFC seems to be a 
hub of cortical processing, able to synthesize a wide range of external and in­
ternal information and also exert control over much of the cortex. Although 
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Figure 18-1 Schematic diagram of some of the extrinsic and intrinsic connections of 
the prefrontal cortex. The partial convergence of inputs from many brain systems and 
internal connections of the prefrontal cortex (PFC) may allow it to play a central role in 
the synthesis of diverse information needed fo r complex behavior. Most connections 
are reciprocal; the exceptions are indicated by arrows. The fronta l eye field (FEF) has 
variously been considered either adjacent to, or part of, the PFC. Here, we compromise 
by depicting it as adjacent to, yet touching, the PFC. (Adapted from Miller and Cohen, 
Annual Review ojNeuTOscience, 24,167-202. ) 
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different PFC subdivisions have distinct patterns of interconnections with 
other brain systems (e.g., lateral-sensory and motor cortex; orbital-limbic), 
there are proQigious connections both within and between PFC subdivisions, 
ensuring a high degree of integration of information (Pandya and Barnes, 1987; 
Barbas and Pandya, 1989; Pandya and Yeterian, 1990; Barbas et ai. , 1991; 
Petrides and Pandya, 1999). Additionally, the heavy reciprocal interconnec­
tions between regions pro.vide an infrastructure ideal for abstract learning­
one that can act as a large associative network for detecting and storing asso­
ciations between diverse events, experiences, and internal states. After learning, 
such a network can complete or " recall" an entire pattern given a subset of 
its inputs, an ability that may allow for a given situation to be recognized as a 
specific instance of an internal model of a more abstract one. 

In addit ion to the anatomical evidence, there is a large amount of psy­
chological, lesion, and neurophysiological evidence supporting the role of the 
frontal cortex in learning abstract rules (also see Chapter 2). Indeed, neuro­
physiological studies in animals and imaging studies in humans have shown 
that the PFC has many of the attributes necessary for representing abstract 
rules (Miller, 2000). First, the neurons sustain their activity across short, mul­
tisecond memory delays (Pribram et a1., 1952; Fuster and Alexander, 1971; 
Fuster, 1973; Funahashi et aI., 1989; Miller et ai. , 1996). This property is crucial 
for goal-directed behavior, which, unlike "ballistic" reflexes, typically extends 
over time. Second, neurons within the PFC are highly multi modal, representing 
a wide range of information, and the cells are plastic-with training, they learn 
to represent task-relevant information. For example, after training on a wide 
range of operant tasks, many PFC neurons (typically one-third to one-half of 
the population) reflect the learned task contingencies-the logic or rules of 
the task (White and Wise, 1999; Asaad et al., 2000; Wallis et ai., 200 1; Mansouri 
et ai., 2006). For example, neurons have been found to represent visual cate­
gories (see Chapter 17) and small numbers (Nieder et ai., 2002), whereas some 
neurons might activate in anticipation of a forthcoming expected reward or 
a relevant cue (Watanabe, 1996; Rainer et ai., 1999; Wallis and Miller, 2003; 
Padoa-Schioppa and Assad, 2006) . In short, the PFC does, indeed, act like a 
brain area that absorbs and reflects the abstract rules needed to guide goal­
directed, volitional behavior. 

Based on this evidence, Miller and Cohen (2001) argued that the cardinal 
PFC function is to acquire and actively maintain patterns of activity that rep­
resent goals and the means to achieve them ("rules" ) and the cortical path­
ways needed to perform the task ("maps"-together, "rulemaps") [Fig. 18-2]. 
Under this model, activation of a PFC rulemap sets up bias signals that 
propagate throughout much of the rest of the cortex, affecting sensory systems 
as well as systems responsible for response execution, memory retrieval, and 
emotional evaluation. The aggregate effect is to guide the flow of neural activity 
along pathways that establish the proper mappings between inputs, internal 
states, and outputs to best perform the task. Establishing the proper mapping is 
especially important whenever stimuli are ambiguous (i.e., they activate more 
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Fig ure 18-2 Schematic diagram illustrating the suggested role for the prefrontal cortex 
(PFC) in cognitive control adapted from Miller and Cohen (200 I). Shown are processing 
units representing cues, such as sensory inputs, current motivational state, memories, 
and so on (CI, C2, and C3), and those representing two voluntary actions (e.g., "re­
sponses" RI and R2). Also shown are internal, or "hidden," units that represent more 
central stages of processing. The PFC is not heavily connected with primary sensory or 
motor cOliices, but instead is connected with higher-level "association" and premotor 
cortices. Via interactions with the basal ganglia (BG) [see text], dopaminergic (DA) 
reward signals foster the formation of a task model, a neural representation that reflects 
the learned associations bet""een task-relevant information (as shown by the recursive 
arrow). A subset of the information (e.g., C I and C2) can then evoke the entire model, 
including information about the appropriate response (e.g., RI). Thus, the PFC can 
coordinate processing throughout the brain and steer processing away from a prepotent 
(reflexive) response (C3 to R2) toward a weakly established, but more goal-relevant, 
response (C3 to RI ). Excitatory signals from the PFC feed back to other brain systems 
to enable task-relevant neural pathways. Thick lines indicate well-established pathways 
mediating a prepotent behavior. Solid circles indicates active units or pathways. 
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than one input representation), or when multiple responses are possible and 
the task-appropriate response must compete with stronger, more habitual al­
ternatives. In short, task information is acquired by the PFC, which provides 
support to related information in posterior brain systems, effectively acting as 
a global attentional controller. 

However, as noted earlier, the PFC is heavily interconnected and does not 
work in isolation. Later in the chapter, we will review evidence that the PFC 
works in close collaboration with the BG in the learning of goal-directed be­
haviors. Specifically, we will argue that, through reciprocal connections between 
the PPC and BG, increasingly complex rules can be constructed. 

CONCRETE RULES AND THE BASAL GANGLIA 

The BG is a collection of subcortical nuclei that, similar to the PFC, have a high 
degree of cortical convergence. Cortical inputs arrive largely via the striatum 
(which includes both the caudate and the putamen); are processed through the 
globus pallidus, the subthalamic nucleus (STN), and the substantia nigra; and 
are then directed back into the cortex via the thalamus (Fig. 18-3). Although 
the PFC is believed to be involved in the creation and implementation of 
abstract rules, the BG is believed to be involved in the formation of concrete 
habits. We will review some anatomical and physiological evidence in support 
of this theory. 

Early evidence about the function of the BG came from human patients with 
damage or dysfunction to this area. For example, both Parkinson's disease and 
Huntington's disease cause profound behavioral deficits, ranging from motor 
(e.g., difficulty initiating volitional movement) to cognitive (e.g., difficulty 
switching tasks) [Taylor et al., 1986; Cronin-Golomb et al., 1994; Lawrence 
et al., 1998] . Animal models of lesions of the striatum produce impairments in 
learning new operant behaviors (or concrete rules) and show that damage to 
different parts of the striatum generally causes deficits similar to those caused 
by lesions of the area of the cortex that loop with the affected region of the 
striatum (Divac et al., 1967; Goldman and Rosvold, 1972). For example, lesions 
of the regions of the caudate associated with the frontal cortex result in cog­
nitive impairments, suggesting that the ' reciprocal connections between the 
BG and cortex playa significant role in the functioning of that cortical area. 

Projections from the striatum are distributed along two parallel routes: the 
"direct" and "indirect" pathways (Fig. 18-3) [Mink, 1996; Graybiel, 2000]. The 
direct pathway leads from the striatum into the globus pallidus internal (GPi) 
and the substantia nigra pars reticulata (SNpr). These regions directly pro­
ject onto the thalamus. All projections from the striatum release gamma­
aminobutyric acid (GABA); therefore, they inhibit downstream neurons in 
the GPi/SNpr. Neurons in the GPi/SNpr inhibit the thalamus, making the 
direct pathway effectively excitatory-activity in the striatum releases inhi­
bition on the thalamus. 1'he indirect pathway involves striatal projections to 
the globus pallid us external (GPe), which in turn, projects to the STN, which 
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Figure 18-3 Simplified circuit diagram for the basal ganglia, illus­
trating the loops it makes with the frontal cortex. See text for expla­
nation. The heavy arrow illustrates the much heavier projection of 
midbrain dopaminergic neurons to the striatum than to the cortex. 
DA, dopamine; GPe, globus pallidus external; STN, subthalamic 
nucleus; GPi, globus pallidus internal; SNpr, substantia nigra pars 
reticulata; SNpc, substantia nigra, pars compacta; VTA, ventral teg­
mental area; Glu, glutamate; GABA, gamma-aminobutyric acid. 

projects onto the GPi/SNpr. Similar to the other connections in the BG, GPe 
inputs into the STN are inhibitory, but the STN provides glutamatergic, ex­
citatory input into the GPi/SNpr. Due to the added inhibitory synapse, the 
indirect pathway increases inhibition on the thalamus. These two pathways are 
believed to exist in an equilibrium that allows for the release ofdesired patterns, 
while inhibiting unintended ones. Although cortical inputs into the striatum 
had a divergent nature, connections between the striatum and the GPi/SNpr 
and GPe are believed to be highly convergent (Flaherty and Graybiel, 1993, 
1994; Parent and Hazrati, 1993). This convergence of inputs is effectively a re­
duction in the dimensionality of the patterns, and may allow for a certain de­
gree of integration and generalization across specific cortical inputs. 

Similar to the PFC, the structure of the BG is ideal for integrating infor­
mation. Most of the cortex projects directly onto the striatum (Kemp and 
Powell, 1970; Kitai et al., 1976) in a divergent manner, so that cortical afferents 
m ake connections to multiple striatal neurons (Flaherty and Graybiel, 1991) . 
The striatum is believed to be subdivided into striosomes and the matrix 
(Graybiel and Ragsdale, 1978), with striosomes preferentially receiving in­
puts from the entire cerebral cortex and the matrix primarily receiving inputs 
from the limbic and hippocampal systems and from the PFC (Donoghue and 
Herkenham, 1986; Gerfen, 1992; Eblen and Graybiel, 1995). Anatomical trac­
ing techniques have suggested that functionally similar cortical areas project 
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into the same striosome (Yeterian and Van Hoesen, 1978; Van Hoesen et aI., 
198] ; Flaherty and Graybiel, 1991). For example, both sensory and motor areas 
relating to the a.rm seem to preferentially innervate the same striosome. The 
segregated nature of BG inputs are maintained throughout the different nu­
clei such that the output from the BG (via the thalamus) is largely to the 
same cortical areas that gave rise to the initial inputs into the BG (Selemon and 
Goldman -Rakic, 1985; Parasarathy et aI., 1992). Additionally, the frontal cor­
tex receives the largest portion of BG outputs, suggesting a close collaboration 
between these structures (Middleton and Strick, 1994,2000,2002). 

The majority of neurons found in both the striosome and the matrix are 
spiny cells (as high as 90%) [Kemp and Powell, 1971J. These neurons are so 
named for the high density ofsynaptic boutons along their dendritic arbor, due 
to the convergent nature of cortical inputs. Along with the cortical inputs, 
spiny cells receive a strong dopaminergic (DA) input from neurons in the 
midbrain. These DA neurons have been suggested to provide a reward-based 
" teaching signal" that gates plasticity in the striatum. All of this has suggested 
that the striatum has an ideal infrastructure for rapid, supervised learning (i.e., 
the quick formation of connections between cortical inputs that predict re­
ward). This is exactly the type of learning that supports the imprinting of spe­
cific stimulus-response pairing that supports concrete rules. Finally, it is im­
portant to note that there are functional and anatomical differences between 
the dorsal and ventral striatum. The dorsal striatum is more associated with 
the PFC and the stimulus-response-reward learning that is the subject of this 
chapter. The ventral striatum is more connected with the sensory cortex 
and seems to be more involved in learning the reward value of stimuli (see 
O'Doherty et aI., 2004) . 

DOPAM INERGIC TEACHING SIGNALS 

The formation of rules requires guidance. Concrete rules are formed, through 
feedback, to actively bind neural representations that lead to reward and break 
associations that are ineffective. This direct form of plasticity can pair coac­
tivated neurons to form specific rules and predictions. Abstract rules are also 
guided by feedback so that relevant events and predictive relationships can be 
distinguished from spurious coincidences. Alth.ough the form of plasticity is 
different for concrete and abstract rules, both need be guided by information 
about which associations are predictive of desirable outcomes. This guidance 
appears to come in the form of a "reinforcement signal" and is suggested to be 
provided by DA neurons in the midbrain. 

Dopaminergic neurons are located in both the ventral tegmental area and 
the substantia nigra, pars compacta (Schultz et aI., 1992, 1997; Schultz, 1998), 
and show activity that directly corresponds to the reward prediction error 
signals suggested by models of animal learning. These neurons increase activity 
whenever the animal receives an unexpected reward and will reduce activity if 
an expected reward is withheld. When active, these neurons release dopamine 
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onto downstream targets. Dopamine is a neuromodulator that has been sug­
gested to regulate plasticity at the innervated site. 

Midbrain DA neurons send heavy projections into both the frontal cortex 
and the striatum. The projections into the frontal cortex show a gradient con­
nectivity with heavier inputs anteriorly that drop off posteriorly, suggesting 
a preferential in put of reward information into the PFC (Thierry et aI., 1973; 
Goldman-Rakic et aI., 1989). However, the midbrain input of DA into the 
striatum is much heavier than that of the PFC, by as much as an order of mag­
nitude (Lynd-Balta and Haber, 1994). Furthermore, recent evidence suggests 
that neither strengthening nor weakening of synapses in the striatum by long­
term depression or potentiation can occur without DA input (Calabresi et aI., 
1992, 1997; Otani et aI., 1998; Kerr and Wickens, 2001) . 

After training, DA neurons in the midbrain will learn to increase activity to 
an unexpected stimulus that directly predicts a reward: The event "stands in" 
for the reward (Schultz et aI., 1993). DA neurons will now respond to the pre­
dictive event when it is unexpected, but will no longer respond to the actual, 
now expected, reward event. In short, the activity of these neurons seems to 
correspond to a teaching signal that says, "Something good happened and you 
did not predict it, so remember what just happened so you can predict it in the 
future." Alternatively, if a reward is expected, but not received, the signal pro­
vides feedback that whatever behavior was just taken is not effective in getting 
rewarded. If these reward signals affect connections within the PFC and BG that 
were recently active, and therefore likely involved in recent behavior, then the 
result may be to help to strengthen reward-pred icting associations within the 
network, while reducing associations that do not increase benefits. In this way, 
the brain can learn what rules are effective in increasing desirable outcomes. 

"FAST," SUPERVISED BASAL GANGLIA PLASTICITY VERSUS 
"SLOWER," lESS SUPERVISED CORTICAL PLASTICITY 

One might expect that the greatest evolutionary benefit would be gained from 
learning as quickly as possible, and there are obvious advantages to learning 
quickly-adapting at a faster rate than competing organisms lends a defi­
nite edge, whereas missed opportunities can be costly (even deadly). However, 
there are also disadvantages to learning quickly because one loses the ability 
to integrate across multiple experiences to form a generalized, less error-prone 
prediction. Take the classic example of one-trial learning: conditioned taste 
aversion. Many of us have had the experience of eating a particular food and 
then becoming ill for an unrelated reason. However, in many cases, the per­
son develops an aversion to that food, even though the attribution is erro­
neous. Extending learning across multiple episodes allows organisms to detect 
the regularities of predictive relationships and leave behind spurious associ­
ations and coincidences. In addition to avoiding errors, slower, more delib­
erate learning also provides the opportunity to integrate associations across 
many different experiences to detect common structures. 
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It is these regularities and commonalities across specific instances that form 
abstractions, general principles, concepts, and symbolisms that are the me­
dium of th~ sophisticated, "big-picture" thought needed for truly long-term 
goals. Indeed, this is fundamental to proactive thought and action. General­
izing among many past experiences gives us the ability to generalize to the 
future, to imagine possibilities that we have not yet experienced-but would 
like to-and given the generalized rules, we can predict the actions and be­
haviors needed to achieve our goal. In addition, abstraction may aid in cog­
nitive flexibility, because generalized representations are, by definition, con­
cise because they lack the details of the more specific representations. Based on 
the compressed representations, it is probably easier to switch between, and 
maintain, multiple generalized representations within a given network than to 
switch between representations when they are elaborate and detailed. 

Networks that learn at a slower rate also tend to be more stable. It is believed 
that fast versus slow learning correlates with large versus small changes in syn­
aptic weights, respectively. Artificial neural networks with small changes in 
synaptic weights at each learning episode converge very slowly, whereas large 
synaptic weight changes can quickly capture some patterns, the resulting net­
works tend to be more volatile and exhibit erratic behavior. This is due to the 
fact that a high learning rate can overshoot minima in the error function, even 
oscillating between values on either side of the minima, but never reaching the 
minima (for more information on artificial neural networks, see Hertz et aI., 
1991; Dayan and Abbott, 2001). 

Given the advantages and disadvantages associated with both forms of 
learning, the brain must balance the obvious pressure to learn as quickly as 
possible with the advantages of slower learning. One possible solution to this 
conundrum comes from O'ReiUy and colleagues, who suggested that fast learn­
ing and slow learning systems interact with one another (McClelland et aI., 
1995; O'Reilly and Munakata, 2000). Studying the consolidation of long-term 
memories, McClelland et al. (1995) specifically suggested that fast plasticity 
mechanisms within the hippocampus are able to quickly capture new mem­
ories while "training" the slower-learning cortical networks. In this way, the 
brain is able to balance the need to initially grasp new memories with the ad­
vantages of a generalized, distributed representation of long-term memories. 
The idea is that the hippocampus is specialized for the rapid acquisition of new 
information; each learning trial produces large weight changes. The output 
of the hippocampus will then repeatedly activate cortical networks that have 
smaller weight changes per episode. Continued hippocampal-mediated reac­
tivation of cortical representations allows the cortex to gradually connect these 
representations with other experiences. That way, the shared structure across 
experiences can be detected and stored, and the memory can be interleaved 
with others so that it can be readily accessed. 

We propose that a similar relationship exists between the PFC and BG. A 
recent experiment by our laboratory provides suggestive evidence (Pasupathy 
and Miller, 2005) [see Fig. lS-4]. Monkeys were trained to associate a visual 
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Figure 18-4 A. One of two initially novel cues was briefly presented at the center of 
gaze, followed by a memory delay and then presentation of two target spots on the right 
and left. Saccade to the target associated with the cue at that time was rewarded (as 
indicated by arrow). After this was learned, the cue-saccade associations were reversed 
and relearned. B. Average percentage of correct performance on all trials (left) and av­
erage reaction time on correct trials (right) across sessions and blocks as a function of 
trial number during learning for two monkeys. Zero (downward arrow) represents the 
first trial after reversal. Error bars show standard error of the mean. 

cue with a directional eye movement over a period of trials (Fig. lS-4A). Once 
performance reached criterion and plateaued, the stimulus-response associ­
ations were reversed and the animals were required to relearn the pairings (Fig 
lS-4B). During the task, single neurons were recorded in both the PFC and 
the BG to determine the selectivity for the cue-direction association in each 
area. Over the period of a few tens of trials, the animals quickly learned the 
new cue-direction pairing (Fig lS-4B), and selectivity in both the striatum 
and PFC increased. As can be seen in Figure IS-SA, neural activity in the 
striatum showed rapid, almost bistable, changes in the timing of selectivity. 
This is in contrast to the PFC, where changes were much slower, with selective 
responses slowly advancing across trials (Fig lS-SB). Interestingly, however, 
the slower PFC seemed to be the final arbiter of behavior; the monkeys' 
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Figure 18-5 A and B. Selectivity for the direction of 
eye movement associated with the presented cue. Se· 
lectivity was measured as the percent of explained vari­
ance by direction (PEV dir) , and is shown in the color 
gradient across time for both the basal ganglia (BG) 
[A], and prefrontal cortex (PPC) [BJ . Black dots show 
the time of rise, as measured DY the time to half-peak. 

improvement in selecting the correct response more closely matched the tim­
ing of PPC changes than striatum changes. 

These results may reflect a relationship between the BG and PPC that is 
similar to the relationship between the hippocampus and cortex, as suggested 
by O'Reilly. As the animals learned specific stimulus-response associations, 
these changes are quickly represented in the BG, which in turn, slowly trains 
the ppc. In this case, the fast plasticity in the striatum (strong weight changes) 
is better suited to the rapid formation of concrete rules, such as the associa­
tions between a specific cue and response. However, as noted earlier, fast 
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learning tends to be error-prone, and indeed, striatal neurons began predicting 
the forthcoming behavioral response early in learning, when that response was 
often wrong. By contrast, the smaller weight changes in the PFC may have 
allowed it to accumulate more evidence and arrive at the correct answer more 
slowly and judiciously. Interestingly, during this task, behavior more closely 
reflected the changes in the PFC, possibly due to the fact that the animals were 
not under enough pressure to change its behavior faster, choosing instead the 
more judicious path of following the PFC. 

The faster learning-related changes in the striatum reported by Pasupathy 
and Miller (2005) are consistent with our hypothesis that there is stronger 
modulation of activity in the striatum than in the PFC during performance of 
these specific, concrete rules. But what about abstracted, generalized rules? 
Our model of fast BG plasticity versus slower PFC plasticity predicts the op­
posite, namely, that abstract rules should have a stronger effect on PFC activity 
than on BG activity because the slower PFC plasticity is more suited to this 
type oflearning. A recent experiment by Muhammad et al. (2006) showed just 
that. Building on the work of Wallis et al. (200 I), in this experiment, monkeys 
were trained to apply the abstract rules "same" and "different" to pairs of pic­
tures. If the "same" nile was in effect, monkeys responded if the pictures were 
identical, whereas if the "different" rule was in effect, monkeys responded if 
the pictures were different. The rules were abstract because the monkeys were 
able to apply the rules to novel stimuli-stimuli for which there could be no 
pre-existing stimulus-response association. This is the definition of an abstract 
rule. Muhammad et al. (2006) recorded neural activity from the same PFC and 
striatal regions as Pasupathy and Miller (2005), and found that, in contrast to 
the specific-cue response associations, the abstract rules were reflected more 
strongly in PFC activity (more neurons with effects and larger effects) than in 
BG activity, the opposite ofwhat Pasupathy and Miller (2005 ) reported for the 
specific cue-response associations. 

In fact, this architecture (fast learning in more primitive, noncortical struc­
tures training the slower, more advanced, cortex) may be a general brain strat­
egy; in addition to being suggested for the relationship between the hippo­
campus and cortex, it has also been proposed for the cerebellum and cortex 
(Houk and Wise, 1995). This makes sense: The first evolutionary pressure on our 
cortex-less ancestors was presumably toward faster learning, whereas only later 
did we add on a slower, more judicious and flexible cortex. These different styles 
of plasticity in the striatum versus PFC might also be suited to acquiring dif­
ferent types of information beyond the distinction between concrete and abstract 
discussed so far. This is illustrated in a recent proposal by Daw et al. (2005). 

THE PREF RONTAL CORTEX AND STRIATUM: MODEL-BUILDIN G 
VERSUS "SNAPSHOTS" 

Daw et al. (2005) proposed functional specializations for the PFC and BG 
(specifically, the striatum) that may be in line with our suggestions. They 
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suggested that the PFC builds models of an entire behavior-it retains infor­
mation about the overall structure of the task, following the whole course 
of action f~om initial state to ultimate outcome. They liken this to a "tree" 
structure for a typical operant task: Behaviors begin in an initial state, with two 
or more possible response alternatives. Choosing one response leads to another 
state, with new response alternatives, and this process continues throughout 
the task, ultimately leading to a reward. The PFC is able to capture this entire 
"tree" structure, essentially providing the animal with an internal model of the 
task. By contrast, the striatum is believed to learn the task piecemeal, with each 
state's response alternatives individually captured and separate from the others . 
This "caching reinforcement learning" system retains information about which 
alternative is "better" in each state, but nothing about the overall structure of 
the task (i.e., the whole "tree"). 

This is believed to explain observations of tasks that use reinforcer devalu­
ation. In such tasks, you change the value of the reward by saturating the animal 
on a given reward (e.g., overfeeding on chocolate if chocolate is a reward in that 
task). This has revealed two classes of behavior. Behaviors that are affected 
by reinforcer devaluation are considered goal-directed because changing the 
goal changes the behavior. As mentioned earlier, goal-directed behaviors de­
pend on the PFC. By contrast, overlearned behaviors whose outcomes remain 
relatively constant can become habits, imperVious to reinforcer devaluation. 
Because these behaviors are not affected b.y changing the goal, they seem to re­
flect control by a caching system in which the propensity for a given alternative 
in each situation is stored independently of information about past or future 
events (s tates). Habits have long been considered a specialization of the BG. 
Daw et al. (2005) proposed that there is arbitration between each system based 
on uncertainty; whichever system is most accurate is the one deployed to con­
trol behavior. 

We believe that this maps well onto our notion of the fast, supervised, BG 
plasticity versus slow, more-Hebbian, PFC plasticity. Fast plasticity, such as 
the nearly bistable changes that Pasupathy and Miller (2005 ) observed in the 
striatum, would seem ideal for learning the reinforcement-related snapshots 
that capture the immediate circumstances and identify which alternative is 
preferable for a particular state. The slow plasticity in the PFC seems more 
suited for the linking in of additional inf6rmation about past states that is 
needed to learn and retain an entire model of the task and th us predict future 
states. 

The interactions of these systems might explain several aspects of goal­
directed learning and habit formation . The initial learning of a complex op­
erant task invariably begins with the establishment of a simple response im­
mediately proximal to reward (i.e., a single state). Then, as the task becomes 
increasingly complex as more and more antecedents and qualifications (states 
and alternatives) are linked in, the PFC shows greater involvement. It facilitates 
this learning via its slower plasticity, allowing it to stitch together the relation­
ships between the different states. This is useful because uncertainty about the 
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correct action in a given state adds up across many states in a complex task. 
Thus, in complex tasks, the ability of the reinforcement to control behav­
ior would be lessened with the addition of more and more states. However, 
model-building in the PFC may provide the overarching infrastructure-the 
thread weaving between states-that facilitates learning of the entire course of 
action. This may also explain why, when complex behaviors are first learned, 
they are affected by reinforcer devaluation and susceptible to disruption by 
PFC damage. Many tasks will remain dependent on the PFC and the models it 
builds, especially those requiring flexibility (e.g., when the goal often changes 
or there are multiple goals to choose among), or when a strongly established 
behavior in one of the states (e.g., a habit) is incompatible with the course of 
action needed to obtain a specific goal. However, if a behavior, even a complex 
one, is unchanging, then all of the values of each alternative at each juncture 
are constant, and once these values are learned, control can revert to a piece­
meal caching system in the BG. That is, the behavior becomes a "habit," and it 
frees up the more cognitive PFC model-building system for behaviors requir­
ing the flexibility it provides. 

Note that this ~uggests that slower plasticity in the PFC might sometimes 
support relatively fast learning on the behavioral level (i.e., faster than rely­
ing on the BG alone) because it is well suited to learning a complex task. This 
distinction is important, because thus far, we have been guilty of confusing 
learning on the neuronal level and learning on the behavioral level. Although it 
is true that small changes in synaptic weights might often lead to slow changes 
in behavior and vice versa, this is too simplistic. Certain tasks might be learned 
better and faster through the generalized, model-based learning seen in the 
PFC than through the strict, supervised learning observed in the striatum. 

RECURSIVE PROCESSING AND BOOTSTRAPPING 
IN CORTICO-GANGUA lOOPS 

"Bootstrapping" is the process of building increasingly complex representa­
tions from simpler ones. The recursive nature of the anatomical loops between 
the BG and PFC may lend itself to this process. As described earlier, ana­
tomical connections between the PFC and BG seem to suggest a closed loop­
channels within the BG return outputs, via the thalamus, into the same cor­
tical areas that gave rise to their initial cortical input. This recursive structure 
in the anatomy may allow for learned associations from one instance to be fed 
back through the loop for further processing and learning. In this manner, 
new experiences can be added onto previous ones, linking in more and more 
information to build a generalized representation. This may allow the boot­
strapping of neural representations to increasing complexity, and with the 
slower learning in the PFC, greater abstractions. 

A hallmark of human intelligence is the propensity for us to ground new 
concepts in familiar ones because it seems to ease our understanding of novel 
ideas. For example, we learn to multiply through serial addition and we begin 
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to understand quantum mechanisms through analogies to waves and particles. 
The recursive interactions between the BG and PFC may support this type of 
cognitive bootstrapping-initial, simple associations (or concrete rules) are 
made in the BG and fed back into the PFC. This feedback changes the repre­
sentation of the original association in the PFC, helping to encode the concrete 
rule in both the BG and PFC. Additional concrete associations through dif­
ferent experiences can als·o be made and modified in a similar manner. The as­
sociative nature of the PFC will begin to bind across experiences, finding sim­
ilarities in both the cortical inputs into the PFC as well as the looped inputs 
from the BG. This additional generalization is the basis for the formation of 
abstract rules based on the concrete rules that are first learned in the BG. As 
this process continues, new experiences begin to look "familiar" to the PFC, 
and a more generalized representation ofa specific instance can be constructed. 
This generalized representation can now be looped through the BG to make 
reliable predictions of associations based on previously learned concrete rules. 

Reward processing is a specific instance where recursive processing might 
provide the framework necessary for the observed neuronal behavior. As pre­
viously described, midbrain DA neurons respond to earlier and earlier events in 
a predictive chain leading to a reward. Both the frontal cortex and the striatum 
send projections into the midbrain DA neurons, possibly underlying their 
ability to bootstrap to early predictors of reward. However, although this is 
suggestive, it is still unknown whether the"se descending projections are critical 
for this behavior. 

Additionally, the PFC-BG loops suggest an autoassociative type of network, 
similar to that seen in the CA3 of the hippocampus. The outputs looping back 
on the inputs allow the network to learn to complete (i .e., recall) previously 
learned patterns, given a degraded version or a subset of the original inputs 
(Hopfield, 1982). In the hippocampus, this network has been suggested to play 
a role in the formation of memories; however, BG-PFC loops are heavily in­
fluenced by DA inputs, and therefore may be more goal-oriented. 

An intriguing feature of autoassociative networks is their ability to learn 
temporal sequences of patterns and thus make predictions. This feature relies 
on feedback of the activity pattern into. the network with a temporal delay, 
allowing the next pattern in the sequence, to arrive as the previous pattern is 
fed back, building an association between the two (Kleinfeld, 1986; Sompo­

linsky and Kanter, 1986). 
The PFC-BG loops have two mechanisms by which to add this lag in feed­

back. One possibility is through the use of inhibitory synapses, which are known 
to have a slower time constant than excitatory ones. The "direct" pathway has 
two inhibitory synapses, the result being a net excitatory effect on the cortex 
via disinhibition of the thalamus, whereas the "indirect" one has three in­
hibitory synapses, making it net inhibitory. These two pathways are believed 
to exist in balance-activity in the indirect pathway countermands current 
processing in the direct loop. But why evolve a loop out of inhibitory syn­
apses? First, it can prevent runaway excitation and thus allow greater control 
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over processing (Wong et aI., 1986; Connors et aI., 1988; Wells et aI., 2000), 
but it is also possible that inhibitory synapses are used to slow the circula­
tion of activity through the loops and allow for the binding of temporal se­
quences. Many inhibitory synapses are mediated by potassium channels with 
slow time courses (Couve et al., 2000). A second way to add lag to the recur­
sion is through a memory buffer. The PPC is well known for this type of 
property; its neurons can sustain their activity to bridge short-term memory 
delays. This can act as a bridge for learning contingencies across several sec­
onds, or even minutes. The introduction oflag into the recursive loop through 
either mechanism (or both) may be enough to tune the network for sequenc­
ing and prediction. 

After training, a lagged autoassociative network that is given an input will 
produce, or predict, the next pattern in the sequence. This is a fundamentally 
important feature for producing goal-directed behaviors, especially as they 
typically extend over time. Experimental evidence for the role of the BG in 
sequencing and prediction comes from neurophysiological observations that 
striatal neural activity reflects forthcoming events in a behavioral task (Jog 
et aI. , 1999) and that lesions of the striatum can cause a deficit in producing 
learned sequences (Miyachi et aI., 1997; Bailey and Mair, 2006). 

SUMMARY: FRONTAL CORTICAL-BASAL GANGLIA lOOPS 
CONSTRUCT ABSTRACT RU LES FOR COGNITIVE CONTROL 

In this chapter, we have proposed that the learning of abstract rules occur 
through recursive loops between the PFC and BG. The learning of concrete 
rules, such as simple stimulus-response associations, is more a function of the 
BG, which-based on anatomical and physiological evidence-is specialized 
for the detection and storage of specific experiences that lead to reward. In 
contrast, abstract rules are better learned slowly, across many experiences, in 
the PFC. The recursive anatomical loops between these two areas suggest that 
the fast, error-prone learning in the BG can help train the slower, more reliable, 
frontal cortex. Bootstrapping from specific instances and concrete rules re­
presented and stored in the BG, the PFC can construct abstract rules that are 
more concise, more predictive, and more broadly applicable; it can also build 
overarching models that capture an entire course of action. Note that we are 
not suggesting that there is serial learning between the BG and PFC; we are not 
suggesting that the BG first learns a task and then passes it to the PFC. Goal­
directed learning instead depends on a highly interactive and iterative pro­
cessing between these structures, working together and in parallel to acquire 
the goal-relevant information. 

The result of this learning can be thought of as creating a "rulemap" in the 
PFC that is able to capture the relationships between the thoughts and actions 
necessary to successfully achieve one's goals in terms of which cortical path­
ways are needed (Miller and Cohen, 2001) [see Fig. 18-2]. The appropriate 
rule map can be activated when cognitive control is needed: in situations in 
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which the mapping between sensory inputs, thoughts, and actions either is 
weakly established relative to other existing ones or is rapidly changing. Acti­
vation of the PFC rule maps establishes top-down signals that feed back to most 
of the rest of the cortex, dynamically modulating information flow through the 
brain to best regulate important information and generate appropriate goal­
directed thoughts and actions. 
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The Development of Rule 
Use in Childhood 

Philip David Zelazo 

Rule use unfolds in time; that much is obvious. It takes time to turn an in­
tention into an action. It takes time to switch between task sets. What may be 
less obvious is that the capacity for rule use is itself continually in flux: It im­
proves gradually, albeit in a saltatory fashion, during childhood and adoles­
cence, and it detehorates in the same way-gradually, and then suddenly­
during senescence. These changes mirror the development of prefrontal cortex 
(PPC), and developmental investigations of rule use therefore provide an op­
portunity not only to understand rule use in an additional temporal dimen­
sion, but also to examine the way in which rule use depends on underlying 
neural mechanisms. 

In developmental cognitive neuroscience, rule use is typically studied under 
the rubric of executive function-the processes underlying the conscious con­
trol of thought, action, and emotion. Indeed, according to one theory, the 
Cognitive Complexity and Control-revised (CCC-r) theory (Zelazo et al., 2003), 
conscious control is always mediated by rules-symbolic representations of 
means, ends, relations between means and ends, and the contexts in which 
these relations obtain. This theory, which has its origins in the work of Vy­
gotsky (e.g., 193411986) and Luria (e.g., 1961), holds that the development of 
conscious control in childhood consists mainly of age-related increases in the 
complexity of the rule systems that children are able to formulate and maintain 
in working memory. Together with a number of related proposals (e.g., Zelazo 
and Muller, 2002; Zelazo, 2004; Bunge and Zelazo, 2006; Zelazo and Cun­
ningham, 2007), CCC-r theory provides a comprehensive framework that 
addresses not only rule use and its development, but also (l ) the role of self­
reflection in bringing about age-related increases in rule complexity (discussed 
in terms of the "levels of consciousness" model), and (2) the way in which the 
development of rule use depends on the development of neural systems in­
volving specific regions ofPPe. Empirical support for this theory is reviewed in 
detail elsewhere (e.g. , Zelazo et aI., 2003). This chapter summarizes the theory, 
provides examples to illustrate key claims, and highlights several predictions 
for future research. 
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