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The ability to readily adapt to novel situations requires something

beyond storing specific stimulus–response associations.

Instead, many animals can detect basic characteristics of events

and store them as generalized classes. Because these

representations are abstracted beyond specific details of

sensory inputs and motor outputs, they can be easily generalized

and adapted to new circumstances. Explorations of neural

mechanisms of sensory processing and motor output have

progressed to the point where studies can begin to address the

neural basis of abstract, categorical representations. Recent

studies have revealed their neural correlates in various cortical

areas of the non-human primate brain.
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Abbreviations
ITC inferior temporal cortex

PFC prefrontal cortex

SEFs supplementary eye fields

S–R stimulus–response

Introduction
In the first half of the 20th century, scientific investiga-

tions of the mind were dominated by BF Skinner and the

radical behaviorist philosophy that all mental life could be

explained by stimulus–response (S–R) associations and,

therefore, that virtually every mental event could be

investigated by examining details of sensory input and

motor output. The failure of this philosophy (and the

advent of modern cognitive science) came with the rea-

lization that it cannot account for all behavior. For one

thing, the capacity of humans and other animals to readily

adapt to novel events with no prior S–R associations must

depend on ‘internal’ representations — those that encode

general characteristics of events into classes abstracted

beyond specific details of sensory inputs and motor out-

puts. This is an efficient and flexible way to deal with a

complex world. These abstracted representations allow

the navigation of many different situations with a minimal

amount of storage. Thus, they can be easily generalized to

novel situations that share basic characteristics but that

may, on the surface, appear very different.

As in experimental psychology, investigations in systems

neuroscience have followed an outward-in trajectory.

We needed to understand something about processing

at the ‘periphery’ of the brain — the input/output details

— before we could tackle aspects of more ‘internal’

processing. The wealth of data about sensory and motor

processing collected over the past several decades pro-

vides a backdrop to address questions about the neural

basis of abstract categories and concepts in non-human

primates.

Perceptual categories
Categorical representations do not faithfully track exact

sensory input. They provide useful groupings and divi-

sions not present in the external world. Consider a simple

example: crickets sharply divide a certain range of pure

tones into ‘mate’ versus ‘bat’ (a predator) [1]. Even

though the input varies along a continuum, behavior does

not. At the low end of the range, crickets approach sounds

equally; however, when the tone of the sound reaches

16 kHz, their behavior suddenly flips to avoidance, and

then remains equivalent across another wide range. This

allows the crickets to maximize reproduction while mini-

mizing disaster. Another example is humans’ perception

of the facial expressions of emotion [2], which also flip at a

discrete point (e.g., from ‘happy’ to ‘sad’). Thus, the

representation of perceptual categories must involve

something distinct from the neural tuning that encodes

physical attributes — the gradual changes in neural

activity as attributes gradually change (e.g. shape, orien-

tation, direction). Perceptual categories have sharp

boundaries (not gradual transitions) and members of

the same category are treated as similar even though their

physical appearance may vary widely.

By learning to take multiple dimensions into account in

order to make sharp distinctions and groupings, advanced

animals such as monkeys can acquire higher-level per-

ceptual categories such as ‘animal’, [3] ‘food’, [4] ‘tree’,

and ‘fish’. [5] The search for neural correlates of such

high-level categories has naturally focused on brain

regions at the final stages of visual processing, such as

the inferior temporal cortex (ITC), a brain region critical

for visual recognition [6–9], and the prefrontal cortex

(PFC), which receives highly processed visual informa-

tion from the ITC and orchestrates voluntary, goal-direc-

ted behaviors [10] (Figure 1).
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ITC neurons with tuning properties suggestive of cate-

gories have been known since the seminal work of Gross

and co-workers [7]. They described a small population of

‘face cells’ that were strongly activated by the gestalt of a

face, but not by individual features of faces or by other

stimuli. Face cells have also been reported in the lateral

PFC [11]. More recently, Vogels [12] reported ITC

neurons in trained monkeys that were selectively acti-

vated by ‘trees’ or ‘fish’ and that showed relatively little

differentiation between diverse examples of those cate-

gories. Interpretation of such work rests on the assump-

tion that similar mechanisms operate in the human brain;

indeed, analogous results have been found in human

experiments. Kreiman et al. [13] recorded from the hip-

pocampus, amygdala, and adjacent cortex of human epi-

leptic patients and found neurons in these areas that were

selectively activated by certain classes of stimuli. Func-

tional imaging of blood flow signals suggests differential

distributions of neurons in human visual cortex activated

by the categories ‘face’ and ‘place’ [14�].

This use of natural images can help identify neurons that

ultimately contribute to category judgments. However,

unless neurons are tested for the identifying character-

istics of perceptual categories (sharp boundaries, equiva-

lence within a category), it is possible that their activity

reflects physical similarity rather than category member-

ship per se; trees and faces, after all, look more like one

another than like other stimuli. So, Freedman et al. [15��]

trained monkeys to categorize stimuli along a morphing

continuum of different blends of ‘cats’ and ‘dogs’. This

revealed lateral PFC neurons with hallmarks of category

representations: sharp differences in activity to similar-

looking stimuli across a discrete category boundary, yet

similar activity to different-looking members of the

same category.

But how exactly are perceptual categories acquired? Some

theories posit that we build up prototypes of each cate-

gory; others suggest that we construct a ‘list’ of defining

features. Insight into the learning process comes from a

recent study by Sigala and Logothetis [16��]. They found

that stimulus features relevant for category judgements

relative to irrelevant features were enhanced in ITC

activity. This suggests a process that weights features

according to their relevance for category membership,

and perhaps supports more feature-based models of cate-

gorization. In general, there is ample evidence to show

that neural circuitry in the ITC and PFC has the plasticity

to acquire new categories: ITC neurons are preferentially

activated by trained stimuli [17] and show selectivity for

learned groupings of pictures [18]. A modest amount of

experience causes the formation of local clusters of neu-

rons with similar properties in the perirhinal cortex [19]

and modifies PFC stimulus representations to make them

much smaller, but more robust and efficient [20]. Baker

et al. [21��] recently trained monkeys that certain features

of complex objects ‘go together’; this resulted in ITC

Figure 1
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Regions of the macaque neocortex discussed in this review. Illustrated are the two general visual system pathways thought to mediate form and color

vision (‘what’) and visuospatial functions (‘where’). The differences between these pathways are relative, however. There is a substantial intermixing

and interchange of this information between the pathways. Abbreviations: AIT, anterior inferior temporal; As, arcuate sulcus; CIT, center inferior

temporal; Cs, central sulcus; IPL, inferior parietal lobule; IPS, interparietal sulcus (unfolded); LPFC, lateral prefrontal cortex; Ls, lateral sulcus;

PIT, posterior inferior temporal; Ps, principal sulcus; SPL, superior parietal lobule; Sts, superior temporal sulcus.

Neural correlates of categories and concepts Miller, Nieder, Freedman and Wallis 199

www.current-opinion.com Current Opinion in Neurobiology 2003, 13:198–203



neural selectivity for those feature combinations in the

trained animals. Mechanisms that piece together unified

representations of related features have obvious advan-

tages for learning categories.

Numerosity: quantitative categories
A number is a most abstract category: ‘two’ could mean

two beers or two countries. Human neuropsychological

and imaging studies point to the involvement of the

parietal lobe and frontal lobe in numerical judgments

[22]; recent studies in monkeys (which have basic numer-

ical abilities [23–25]) have searched for their neural

correlates in these areas. For practical purposes, the first

experiments in this line of work started with smaller

numbers that can be handled by monkeys and other

animals [26]. Of course, animals cannot derive numerical

information by verbally and serially ‘counting’ items (like

humans); rather they encode numerosities in a non-ver-

bal, analogue magnitude format, as do pre-verbal human

infants [27,28]. Such approximate representations of

numerical values may be regarded as biological precursors

of adult humans’ counting abilities.

Sawamura et al. [29��] trained monkeys to alternate

between five arm movements of one type and five of

another. They found neurons in a somatosensory-respon-

sive region of the superior parietal lobule (SPL) that kept

track of the movement number. Relatively few such

neurons were found in the same lateral PFC regions in

which other perceptual categories and face cells had been

found. By contrast, Nieder et al. [30��] trained monkeys to

judge the number of items (between one and five) in a

visual display and found ample number-tuned neurons in

this lateral PFC region. One possibility for the difference

between these studies may be modality employed (touch

versus vision), but another significant factor may be the

level of abstraction. Most movement–number represen-

tations found by Sawamura et al. [29��] (85%) were not

abstract: number-selective activity depended on whether

the monkey’s movement was ‘push’ or ‘turn’. In contrast,

the visual number representations found in the lateral

PFC were abstract and generalized. Changes in the

physical appearance of the displays had little effect on

the activity of the majority of the number-tuned neurons

(Figure 2; [30��]).

Such neurophysiological studies can tell us where and

how category information might be represented in the

brain. For example, they show that categories are

reflected in the activity of single neurons, just like phy-

sical attributes such as color or shape. Ingraining cate-

gories at this low level (rather than having them emerge as

interactions between neurons) may explain why objects

can be categorized so rapidly [4]. Even so, these neurons

are not ‘grandmother cells’ (i.e., single neurons that

represent an entire percept or concept). Neither cate-

gories nor any other type of information seems to be

ultimately encapsulated in an individual neuron. Just as

physical attributes, such as color, ultimately depend on a

pattern of activity across a neural population, so do

categories. Single neurons are rarely reliable detectors

(but see [31]) and neural regions biased towards face or

place notwithstanding, there is little evidence that such

specificity is a general coding scheme. Finally, neurophy-

siological studies can also place constraints on theory. For

example, both behavioral and physiological data [30��]
argue for parallel extraction of numerosities, supporting

one type of network model of numerosity [32].

Rules: forming general plans
Meaningful groupings of information do not only occur in

the sensory domain. We can lump together sets of events

and actions into general guidelines, principles, or rules for

behavior. Consider restaurants: we have knowledge of

generic rules such as ‘wait to be seated’, ‘order’, and ‘pay

the bill’ that are long decoupled from the specific experi-

ences in which they were learned. We then have a notion

of what is expected of us the first time we walk into a

new restaurant.

Figure 2
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A neuron from the lateral PFC tuned to the number of displayed items.

Monkeys were required to judge the number of items in visual

displays. This neuron is tuned to number but virtually unaffected by

changes in the exact appearance of the displays. The red and green

lines show activity in response to two different stimulus sets. This neuron

was unaffected by changes in the position and size of the items.

Adapted from Nieder et al. [30��].
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As learning and applying rules are central to complex,

goal-directed behavior, several investigators have recently

argued that their acquisition and representation may be a

cardinal PFC function; their lack could explain the ‘goal

neglect’ that follows PFC damage [10,33�,34]. Indeed,

neural correlates of rules are evident in the PFC of both

monkeys and rodents [35–37,38��]. For example, in mon-

keys trained to alternate between a spatial rule (go to the

location of a cue) and a conditional rule (go to the location

associated with the cue), the sensory and motor-related

activities of many PFC neurons are gated or modulated

according to which rule the animal is currently using

[35,36]. In other words, it seems that PFC neurons do

not simply reflect stimuli and actions, they also encode

their behavioral context.

When rules involve familiar cues and responses (such as

‘stop at red’), they are ‘concrete’ and can be represented

as a set of specific S–R associations. With varied experi-

ence, rules can be abstracted beyond such specificity.

Wallis et al. [38��] trained monkeys to alternate between

applying either a ‘match’ or ‘non-match’ rule to pairs of

Figure 3
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Abstract encoding of left versus right in the SEF. Data were obtained from a supplementary eye field neuron exhibiting categorical selectivity for

object-centred location (left end versus right end of object). (a) Object-centred task with spatial cue. While the monkey maintained central fixation

(panel 1), a sample bar appeared (panel 2) and a cue spot flashed on either its left or right end (panel 3). After a delay (panel 4), a target bar appeared

at an unpredictable location in the upper visual field (panel 5). The monkey had to execute a saccadic eye movement to the end of the target bar
corresponding to the cued end of the sample bar (panel 6). The circle in each panel indicates the direction of gaze at the corresponding stage of the

trial. Strong neuronal activity occurred when the instruction was to select (b) the bar’s left end as target but not when the instruction was to (c) select

the bar’s right end. (d) Object-centred task with color cue. Events were identical to those in (a) with the exception that the color of the cue (blue or

yellow) instructed the monkey whether to select the left or right end of the target bar. The neuron still fired strongly on (e) bar-left trials but not on

(f) bar-right trials. Thus, it expressed categorical selectivity for object-centred location, we regardless of the physical attributes of the cue conveying

the instruction. Figure courtesy of Carl Olson, after [39].
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pictures. After training with a wide range of pictures,

monkeys could apply these rules successfully upon seeing

a novel picture for the first time (and therefore had no

prior S–R association). The modal group of task-related

lateral and orbital PFC neurons reflected whichever rule

was currently being used. This neural activity was inde-

pendent of which specific cue signalled the rule and was

not linked to the behavioral response.

Action-related categories
Categorical representations are also evident in the motor

domain. Olson and co-workers [39,40��] explored corre-

lates of representations of ‘right’ and ‘left’ by training

monkeys to make an eye movement to either the right or

left side of a small stimulus. Neurons in the supplemen-

tary eye fields (SEFs) — a frontal cortical area involved in

eye movement control (Figure 1) — exhibited activity

that varied depending on whether monkeys were cued to

saccade to the left or right side, but did not vary with the

exact position of the bar (and hence with the details of the

eye movements), nor with the sensory conditions or rule

used to cue the side (Figure 3).

Conclusions and future directions
Even in this short review, we present examples of abstract

categorical representations across different levels of pro-

cessing, brain regions, and species. The great usefulness

of storing groupings of events and actions as meaningful

classes that transcend physicality no doubt explains this

ubiquity. However, this means that one future challenge

for cognitive neuroscience will involve sorting out the

roles that different areas play in representing, storing, and

recalling different types and levels of abstraction.

For example, take the PFC, ITC and the visual categories

described above. Where are the categories stored? The

temporal lobe is a good bet: category-specific agnosias

follow its damage. Is category information, then, merely

copied to the PFC from the ITC when it is brought

‘online’ to guide behavior? Or does the PFC further

abstract and elaborate the information as it retrieves it?

One model of object recognition suggests the latter [41��].
Objects can belong to multiple categories that vary accord-

ing to current context and purpose. So, it may be more

efficient to save their explicit representation until the

highest level of the perception–action cycle (the PFC),

where the greatest amount of flexibility is needed. Indeed,

a whole host of questions remain to be asked. How are

superordinate and subordinate categories and concepts

represented? How are multiple category memberships

of a stimulus stored and gated? The work described here

is a first stab at understanding how our brains acquire,

store, and use the knowledge that makes us intelligent.
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