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Abstract

& Monkeys have been introduced as model organisms to
study neural correlates of numerical competence, but many of
the behavioral characteristics of numerical judgments remain
speculative. Thus, we analyzed the behavioral performance of
two rhesus monkeys judging the numerosities 1 to 7 during a
delayed match-to-sample task. The monkeys showed similar
discrimination performance irrespective of the exact physical
appearance of the stimuli, confirming that performance was
based on numerical information. Performance declined
smoothly with larger numerosities, and reached discrimination
threshold at numerosity ‘‘4.’’ The nonverbal numerical
representations in monkeys were based on analog magnitudes,
object tracking process (‘‘subitizing’’) could not account for

the findings because the continuum of small and large
numbers shows a clear Weber fraction signature. The lack
of additional scanning eye movements with increasing set
sizes, together with indistinguishable neuronal response
latencies for neurons with different preferred numerosities,
argues for parallel encoding of numerical information. The
slight but significant increase in reaction time with increasing
numerosities can be explained by task difficulty and
consequently time-consuming decision processes. The behav-
ioral results are compared to single-cell recordings from the
prefrontal cortex in the same subjects. Models for numerosity
discrimination that may account for these results are
discussed. &

INTRODUCTION

Evidence for numerical competence in animals has been
obtained for many different species over the past deca-
des. Mammals (reviewed by Boysen & Capaldi, 1993),
birds (reviewed by Emmerton, 2001), and amphibians
(Uller, Jaeger, Guidry, & Martin, 2003) can discriminate
stimuli based on the number of items. These studies
indicate that rudimentary numerical competence may
be widely spread in the animal kingdom and support the
hypothesis of phylogenetic precursor system(s) for high-
er, verbal-based numerical abilities in adult humans
(Gallistel & Gelman, 1992). In fact, developmental psy-
chologists showed that preverbal human infants at the
age of several months are already able to distinguish sets
of small numerosities and perform simple numerical
computations (e.g., Wynn, Bloom, & Chiang, 2002; Xu
& Spelke, 2000; Xu, 2003) (see also Feigenson, Carey, &
Spelke, 2002, for a critical evaluation of older studies).
Thus, a better understanding of nonverbal numerical
abilities in animals can yield insight into the more
advanced human numerical abilities.

Monkeys are excellent model organisms to study
numerosity judgments. Several studies showed that
macaque monkeys are endowed with considerable nu-
merical competence. Brannon and Terrace (1998, 2000)

demonstrated that rhesus monkeys could distinguish
between sets of visual elements on the basis of number
alone. Even more, the monkeys were able to successfully
represent the ordinal relations between the numbers 1
to 9. Elementary arithmetic abilities comparable to
human babies (Wynn, 1992) have been reported for
wild rhesus monkeys by Hauser, MacNeilage, and Ware
(1996) and Hauser, Carey, and Hauser (2000); the mon-
keys were able to detect simple additive and subtractive
changes in the number of objects. Because of the com-
paratively well-understood neural structures of the pri-
mate brain and the relative similarity between the
monkey and human brain, macaques constitute an ideal
model organism to investigate the neural substrates and
mechanisms underlying numerical competence (Nieder,
Freedman, & Miller, 2002; Nieder & Miller, 2003; Nino-
kura, Mushiake, & Tanji, 2003, 2004; Sawamura, Shima,
& Tanji, 2002).

To date, it is widely assumed that there are basically
two nonverbal systems for representing numerosity in
animals, human infants, and adults (for a review, see
Carey, 2001). One is an object tracking system, which
yields relatively discrete representations (also termed
‘‘subitizing’’ in an older stipulation). This system keeps
track of a small number of items by assigning markers (or
pointers) to individual elements. Because each individual
object has its own symbol (‘‘file’’), such representations
are called object-file representations. These symbols (orMassachusetts Institute of Technology
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‘‘tokens’’) are derived from object segregation processes
that take place in parallel in a preattentive stage of vision
(Pylyshyn, 2001; Treisman, 1992). Based on the limited
number of markers, this system can only represent up
to four items (set-size limit); it fails for larger numbers.
For larger numbers, an analog magnitude system (‘‘es-
timation system’’) is applied that has no immediate
upper limit, but does become systematically less pre-
cise with increasing numbers. Thus, the hallmark of
analog magnitude representations is that they obey
Weber’s Law.

In a previous publication, we demonstrated that
monkeys engaged in a delayed match-to-numerosity task
formed analog numerical representations (Nieder &
Miller, 2003). Both the behavioral and neural data
obeyed Weber’s Law (the just noticeable difference be-
tween two numerosities becomes larger in proportion to
increasing numerical values). This clear Weber fraction
signature is not compatible with nonnumerical ‘‘object-
file’’ representations, which would show a strict limit of
quantities that can be discriminated.

Knowing the representational system the monkeys in
our experiments used, it became possible to explore
numerical processing in more detail. One fundamental
question is whether monkeys employ a serial counting-
like process when confronted with a number of simul-
taneously presented items. If so, we would assume that
they serially scan the elements of visual displays when
discriminating their number (Brannon & Terrace, 2000).
Alternatively, the monkeys could use a parallel enumer-
ation process that does not depend on serial scanning
eye movements. So far, the issue of serial scanning has
not been addressed, because prior studies have not
measured eye movements.

A second important issue is related to the ubiquitous
finding that reaction times (RTs) increase with a growth
of the set size, already for small numerosities. According
to Gallistel and Gelman (2000), this phenomenon argues
for a serial counting process of some kind. An alternative
explanation has been provided by Pylyshyn (2003), who
assumes that judging the numerosity of a set of items
may involve two different processing stages: an individ-
uation stage that may derive object entities of a (visual)
scene in parallel, and a (serial) enumeration stage in
order to judge the numerosity of individuated items.
Finally, it can be argued that the observed increase in
RTs while judging numerosities is not a consequence of
a numerical coding stage per se, but rather related to
task difficulty and detection processes.

To address these issues, we trained two rhesus mon-
keys to perform a delayed match-to-numerosity task
(Nieder et al., 2002) and employed behavioral methods
that afforded us tight control and close monitoring of
the animals’ behavior. By examining discrimination per-
formance, eye movements, and RT data, we addressed
questions about the parallel versus serial nature of
numerical judgments.

RESULTS

Monkeys viewed a sequence of two displays separated
by a memory delay and were required to judge whether
the displays contained the same small number of items
(1–7) (Figure 1A). To ensure that monkeys solved the
task by judging number per se rather than simply memo-
rizing sequences of visual patterns or paying attention
to low-level visual features that correlate with number,
we employed two types of stimulus manipulations. We
randomly varied the position of the items over 24
locations centered around the monkey’s center of gaze
as well as randomly varied the items between five dif-
ferent sizes. We also used eight sets of stimuli that,
across them, controlled for changes in the total area of
the items, total circumference, density, and exact ap-
pearance (Figure 1B) (see Nieder et al., 2002).

Performance for Numerosities 1 to 7

The performance data were fitted with a sigmoid func-
tion. Thresholds at performance levels of 90% (T90),
75% (T75), and 60% correct responses (T60) were
derived from the fit to all of the eight different stimulus
sets (Figure 2). The average performance curve of both
monkeys for all conditions was a smoothly declining
function that is well described by a sigmoid function
[Figure 3; goodness-of-fit (r2) = .986]. There was no
sudden change in the performance for any of the tested
seven numerosities, which additionally argues against
strict set-size limitations and thus against the object-file
model of the enumeration process.

Figure 4 displays the mean discrimination threshold
values for both monkeys individually and their average
(monkey T: T90 = 2.0, T75 = 3.2, T60 = 4.4; monkey
P: T90 = 2.5, T75 = 3.6, T60 = 4.7). Each monkey
performed between 108 and 314 trials per numerosity
and stimulus set. According to a two-tailed binomial
test with n � 105, a 60% correct response level is signi-
ficant at p < .05. Thus, using 60% correct performance
as criterion, the upper limit of discriminable visual
quantities was between four and five items. The perfor-
mance of monkey P was significantly superior compared
with monkey T at the 90% and 75% performance level
( p < .05, Wilcoxon test, two-tailed), but not at the 60%
level ( p = .32, Wilcoxon test, two-tailed).

To determine if certain stimulus sets (i.e., certain
visual features) resulted in a systematic increase or
decrease in discrimination thresholds, a Pearson corre-
lation analysis for the monkeys’ thresholds at different
performance levels was calculated. At a given threshold
level, the threshold values of monkey T for different
stimulus sets were plotted against the threshold values
of the corresponding sets for monkey P. None of the
correlations were significant ( p < .05), and the correla-
tion coefficients decreased for lower threshold levels
(T90: r = .65; T75: r = .50; T60: r = .17). This finding
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Figure 1. Stimulus protocol

and example stimuli. (A)

Stimulus protocol for the
delayed match-to-sample

task. A trial started when the

monkey grabbed a bar. In
the first 500 msec, the

monkey only had to fixate a

small fixation spot in the

center of the display. A
sample was displayed for

800 msec, followed by a

1000-msec delay period. The

test stimuli contained either
the same number of items

(‘‘match’’), or one more or

one less item (‘‘nonmatch’’)
than the sample display.

Matches and nonmatches

appeared with equal

probability. If a match
appeared, the monkey had

to release the lever to

receive a reward. If a

nonmatch appeared, the
monkey had to wait for the

second test stimulus (that

was always a match) to get a
reward for bar release. (B)

Example images applied for

the different stimulus

protocols.
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suggests that none of the stimulus protocols were
especially easy (or difficult) for the two monkeys. Thus,
it is unlikely that the monkeys used low-level visual
features to solve the task. These results, along with
our prior study (Nieder et al., 2002), confirm that the
animals performed the task based on the quantity of
items.

Reaction Times

The critical choice point in the trial was the presentation
of the first test stimulus: The monkeys either released
the lever if it was a match, or continued to hold it (for a
nonmatch) across its disappearance to release the lever
for the second test stimulus (match) (Figure 1A). The
second matching test stimulus was used on ‘‘nonmatch’’
trials to ensure that the monkeys were paying attention
and were engaged by the task on each and every trial.
But, because the second match stimulus on nonmatch
trials was predictable, we only analyzed behavioral RTs
for lever release on trials in which the first test stimulus
matched the sample (‘‘match’’ trials).

Both animals showed significantly different RTs for
different numbers of sample display items ( p < .0001,
Friedman test, Figure 5). Each data point was derived
from 192 to 414 trials for monkey T (Figure 5A), and 275
to 671 trials for monkey P (Figure 5B). RTs increased
significantly from ‘‘1’’ to ‘‘3’’ in both monkeys ( p < .01,
Mann–Whitney U test). For numerosities up to ‘‘4,’’ each
additional item in the display resulted in a (average)
latency increase of 85 msec for monkey T, and 49 msec
for monkey P. Latencies for numerosity ‘‘4’’ were the
maximum and inflection point in both functions. The RT
median for numerosity ‘‘4’’ was 606 msec for monkey T
and 472 msec for monkey P. For numerosity ‘‘5,’’ the
latency tended to decrease for monkey T ( p < .06,
Mann–Whitney U test) and significantly declined for
monkey P ( p < .02, Mann–Whitney U test). Between
‘‘5’’ and ‘‘7,’’ the reaction latency had reached a plateau
in both animals. Monkey P responded considerably
faster than monkey T (for all numerosities p < .001,
Mann–Whitney U test). On average, monkey P re-
sponded 26 msec faster to ‘‘1’’ (minimal difference)
and 146 msec faster to ‘‘6’’ (maximal difference).

Figure 2. Performance data of monkey T (left column) and monkey P

(right column) to stimuli with different set sizes. The stimulus protocol is

indicated in the upper right corner of each panel. Numerosity ranged

from one to five items for the ‘‘linear’’ and the ‘‘shape’’ protocol; all
other protocol types contained displays with up to seven items. The size

of the data points represents the relative number of trials per

numerosity. By using a maximum-likelihood technique, a logistic

psychometric function (solid line) was fitted to the data points.
Discrimination thresholds at 90%, 75%, and 60% correct responses are

marked by horizontal lines crossing the fit (line length represents

confidence intervals).
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Eye Movements

If the monkeys were enumerating the display in a serial
fashion, this might be reflected in an increase in saccadic
eye movements with an increase in display items. Alter-
natively, if the monkeys made more or less the same
number of eye movements irrespective of the number of
items, that would suggest a parallel encoding processing.

To guarantee a period of stable retinal images for
electrophysiological recordings (those data are discussed
elsewhere—see Nieder et al., 2002; Nieder & Miller,
2003), the monkeys maintained gaze on a central fixation
target during the sample presentation and the memory
delay. When the test stimulus was presented, however,
they were allowed to freely scan it. Thus, we examined
eye movements to this stimulus. The test display was
shown for a maximum duration of 1200 msec, but dis-
appeared if and when themonkey released the lever. The
lever release occurred to a match and thus we limited the
eye movement analysis to those trials only. This was to
ensure that we only examined eye movements up to and
not beyond the point at which the monkey finished
making its numerical judgment. The only indication of
this occurred onmatch trials (the lever release). Thus, we
determined the number of eye movements from test-
display onset to lever release (see Methods).

Eye movements during test stimulus presentation
were always made towards individual display items.
Figure 6 shows typical examples of eye movements made
during the course of eight trials with different match
numerosities. The top display shows the presented
image together with eye traces (‘‘white lines’’), the dia-
grams below each image show the corresponding velocity
profiles of the eye movements. In other words, the top
panels give the spatial dimension of the eye movements,
the lower panels show the temporal dimension.

The upper panels in Figure 6 show that the monkey
was fixating at the center of the displays (zero coor-
dinates) before test stimulus onset (i.e., during the

sample and delay epochs). Minor eye movements such
as microsaccades resulted in a ‘‘clew’’ of eye traces in
the center of the display for these periods. Once the test
stimulus appeared, the monkey made rapid eye move-
ments to one or two display items, indicated by
lines leading towards them. The lower panels in Figure 6
illustrate the respective eye velocity displays. Differences
in eye position between sampling frames are shown. An
eye position data point was taken every 8.3 msec (120 Hz
sampling). Only minor velocity changes were present
during the first part of the trial from fixation onset to the
onset of the test period (indicated by the dotted ver-
tical line in the velocity panels). The rapid velocity
changes during display of the match display reflect the
monkey’s saccades.

The examples in Figure 6 illustrate the general finding.
Even though the monkeys had 1200 msec to view the
display, they made only a few saccades, and the number
of saccades did not systematically increase with item
numbers. Eye movements were analyzed separately for
monkey T (360 to 860 trials per numerosity) and mon-
key P (631 to 1466 trials per numerosity). The distribu-
tions of the numbers of saccades were highly nonnormal
for all numerosities and best described by a Poisson
distribution ( p < .05, one-sample Kolmogorov–Smirnov
test). Monkey T made different numbers of saccades
across the seven different numerosities ( p < .001,
Kruskal–Wallis test). The number of saccades was equal
for numerosities 1 and 2, but significantly higher for
numerosity 3 and up compared to 1 and 2 ( p < .001,
Mann–Whitney U test). However, no significant differ-
ences between numerosity 3 and all higher numerosities
were observed, even though the range of performed
saccades increased (see Figure 7A). The median for all
distributions was only one saccade. For monkey P, no

Figure 3. Averaged performance of both monkeys to all stimulus

conditions. The dotted line represents the best sigmoid fit to the data

(error bars ± SEM ).

Figure 4. Mean discrimination thresholds of the two monkeys for

threshold levels of 90%, 75%, and 60% correct responses. The means
and the standard deviations from the means for all eight stimulus

protocols are shown. (Data points are slightly shifted vertically to avoid

overlapping.)
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significant difference in the number of saccades was
detected ( p = .13, Kruskal–Wallis test) when numeros-
ities 6 and 7 were excluded (which could not be
discriminated above chance levels by the animals). For
this monkey, the median for all numerosities was again
one saccade (Figure 7B). Taken together, these results
indicate that there was no systematic relationship be-
tween saccade number and the number of items, which
would have been expected if the monkeys enumerated
the display in a serial fashion.

DISCUSSION

In a previous article, we showed that the discrimination
of two monkeys engaged in a delayed match-to-numer-
osity task obeyed Weber’s Law for both small and large
numbers of items (Nieder & Miller, 2003). Based on the
discrimination functions and the derived Weber frac-
tions, no change for the discrimination of small and
large numerosities that would have argued for a switch
in representational systems (from object tracking to
analog magnitudes) was observed. This suggests that
the animals used an analog numerical system (estima-
tion system) to judge quantities throughout the tested
range of set sizes. Even though, RTs increased slightly
and significantly up to numerosity 4, thus indicating
some time-consuming aspects in judging higher numer-
ical values. At the same time, the monkeys’ eye move-
ments towards individual items remained constant
across numerosities, suggesting that individual items
were not scanned serially. In the following, the data
derived from our rhesus monkeys will be discussed in
the light of recent studies in monkeys, apes and humans.

RT Data and Object Tracking Mechanisms
(Subitizing)

At a numerical distance of 1, the monkeys showed
significant numerosity discrimination up to numerosity
4; from numerosity 5 on, performance was at chance

level. Thus, the numerical range that allows reliable
conclusions (in terms of RT and eye movements) should
be constrained to the range 1 to 4.

In our study, RT increased for numerosities from 1 to
4 by 67 msec per additional item for the two monkeys.
These differences were small but significant. In human
studies, even though the RT function for small numer-
osities tends to show only a mild increase, the differ-
ences in RT are usually significant (even though the
older studies failed to perform proper statistics and
plotted the data on compressed time scales). This can
also be seen in a recent study with a chimpanzee.
Appendix B of the study by Tomonaga and Matsuzawa
(2002) displays the result of the appropriate nonpara-
metric tests for the highly nonnormally distributed RT
data of the ape; the RT differences are significant even
for the small numerosities.

At first glance, the RT value of 67 msec in our study
fits well with the general finding that enumerating sets
of four or fewer items takes about 60 msec per item
(called the ‘‘subitizing slope’’). Subitizing was defined as
an effortless, fast, and accurate process to judge a small
number of items (Kaufman, Lord, Reese, & Volkmann,
1949). Relatively fast RTs are traditionally taken as an
indication for subitizing. Indeed, in humans, small
numbers of items can be gathered with RTs of about
40–100 msec per item. The enumeration time, however,
increases sharply by about 200–350 msec per item for
numerosities beyond 5 (Simon, 1997; Trick & Phylyshyn,
1993; Mandler & Shebo, 1982), which has been inter-
preted as a serial counting strategy for higher numbers.
Subitizing has originally been explained as recognition of
canonical patterns (Mandler & Shebo, 1982). According
to this suggestion, we learn that collections of one to
three objects fall into regular configurations: 1 is a sin-
gleton, 2 a line, and 3 a triangle. Recognition of these
patterns would result in a flat response curve in terms of
RT and error rate for the numbers 1 to 3. More recently,
Trick and Pylyshyn (1994) argued that subitizing exploits
a limited-capacity parallel mechanism for item individu-

Figure 5. RTs to match

stimuli for the seven tested

numerosities. The box charts

display values for monkey T (A)
and monkey P (B). The bottom

and top of the vertical line

marks the 5th and the 95th

percentile, respectively. The
bottom and top of the box

indicate the 25th and 75th

percentile, respectively. The
median line of the box marks

the 50th percentile. The circle

in the box marks the mean.
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ation, the FINST mechanism. A limited number of object
markers called FINSTs (FINgers of INSTantiation) are
automatically attached to targets in the visual field for
later processing (Trick & Pylyshyn, 1994). The FINST
model proposes a ‘‘visual indexing mechanism’’ for
‘‘picking out, tracking and providing cognitive access
to visual objects’’ (Pylyshyn, 2001).

What mechanism may cause a significant increase in
numerosity judgment RTs for object tracking (subitiz-
ing)? In a strict sense, object tracking mechanisms (which
include ‘‘subitizing’’ according to our understanding) are
thought to work in parallel, and thus cannot explain even
slight RT increases. Pylyshyn (2003), however, argues
that subitizing involves two distinct subprocesses, an
item individuation process as well as an enumeration
process that judges the quantity of individuated items to

judge their numerosity. The latter enumeration process
appears to be a serial process involving visiting each item
(or index, respectively). In this framework, the individu-
ation stage would be strictly parallel (see also Sagi &
Julesz, 1984), but due to the subsequent enumeration
stage, a slope of about 60 msec per item would result.
However, if there are more than four or so items in the
display, they cannot all be indexed and, thus, must be
located one at a time (Pylyshyn, 2003). For larger numb-
ers, another process must be postulated—perhaps esti-
mating, perhaps segmentation of items into smaller
groups, which then could be subitized again (as sug-
gested by Mandler & Shebo, 1982). In the following, we
will argue that such object tracking models cannot
account for the monkeys’ RT data because monkeys used
an analog magnitude system.

Figure 6. Typical examples of eye movements made by monkey T during the task. Examples for test displays with numerosity 1 (A), 2 (B), 3 (C, D),
4 (E, F), and 5 (G, H) are shown. The top row panels illustrate eye positions (‘‘white line’’) collapsed over time from fixation onset to bar response.

The bottom panels corresponding to each match display show the velocity traces of the eye over the same time period (test onset is indicated by

dotted vertical bars in the graph). Abrupt velocity changes indicate a saccade. Monkeys had to maintain fixation in the center of the displays (fixation

target not shown) and were only allowed to move their eyes after the end of the delay period. Only match trials are shown.
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Evidence for Analog Magnitude Representations,
and Not Object Tracking

Even though the RT values correspond well with the RT
values discussed for subitizing phenomena, subitizing
and its potential subprocesses cannot account for the
monkeys’ discrimination performance. First, subitizing
by means of canonical pattern recognition (Mandler &
Shebo, 1982) can be excluded, because the monkeys
showed no differences in discrimination whether the
items were linearly, shapelike, or in any other configu-
ration (also see Nieder et al., 2002). Second, there was
no sharp drop in performance beyond four items; the
average performance curve from the monkeys shows a
clear sigmoidal function and not the step function (at
‘‘4’’) expected for subitizing (Figure 3). Instead, perfor-
mance declines smoothly through ‘‘4.’’ And third, and
most important, the clear Weber fraction signature of
the monkeys’ discrimination performance is not com-
patible with subitizing or object tracking. In a previous
study where we tested numerosities up to 11 in a match-
to-number task identical to this one (Nieder & Miller,
2003), we showed that variance of the monkeys’ perfor-
mance increased systematically with an increase in nu-
merosity. These behavioral filter functions were best
described on a logarithmic number scale. For all behav-
ioral filter functions, a constant Weber fraction (0.35, on
average) could be derived. In addition, the filter func-
tions of single neurons in the prefrontal cortex of these
monkeys mirrored the monkeys’ performance in that
they became progressively less selective with increasing
preferred numerosity (Nieder & Miller, 2003). Thus,
both the behavioral as well as the neural data obeyed
Weber’s Law. This clear Weber fraction signature argues
for explicit numerical representations in monkeys ac-
cording to an analog magnitude mechanism.

Based on our results, we favor the view that numer-
osities in monkey are represented by mental magni-
tudes. The same conclusion has been drawn in a study
where monkeys learned to understand the ordinal re-
lationships between numerosities (Brannon & Terrace,

1998, 2000). Also in this study, monkey showed a clear
numerical distance and magnitude effect, consistent
with a Weber fraction signature. Evidence for analog
magnitude representations has been reported in other
animals as well (Meck & Church, 1983; Mechner, 1958).
Mechner (1958) trained rats to perform a certain num-
ber of lever presses (4, 8, 12, or 16 lever presses). The
rats’ performance became systematically more imprecise
as the target numbers increased, resulting in progressive
broadening of the lever-presses distributions. More re-
cently, indications of a Weber fraction signature have
also been observed in human infants (Xu & Spelke,
2000; Xu, 2003) and young children (Brannon & Van de
Walle, 2001). Analog magnitude representations are also
evident in humans. If humans are hindered from verbal
counting during a numerosity judgment, the continuum
of small and large numbers shows a clear Weber fraction
signature (Cordes, Gelman, Gallistel, & Whalen, 2001).

Serial or Parallel Enumeration?

How should we interpret the slight increase of RTs
within the analog magnitude system? It could be argued
that this significant increase of RTs supports a serial,
counting-like process. Several findings, however, argue
against serial processing.

First, RTs for serial counting in humans are much
slower. It usually takes an additional 200–350 msec per
item (Simon, 1997; Trick & Phylyshyn, 1993; Mandler &
Shebo, 1982). It still may be argued that the monkeys are
highly trained and could therefore show shorter RTs.
However, a decrease of RT by a factor of 4 seems very
unlikely.

An even stronger argument against serial processing is
provided by the analysis of eye movements. Additional
saccadic movements during the presentation of the test
array would contribute to a better scanning of the array
(Mandler & Shebo, 1982), even in parafoveal vision (±58
of visual angle). However, neither monkey showed a
systematic increase in the number of saccades with an

Figure 7. Number of eye

movements to match stimuli

for the seven tested

numerosities. The box charts
display values for monkey T

(A) and monkey P (B). The

bottom and top of the vertical

line mark the 5th and the 95th
percentile, respectively. The

bottom and top of the box

indicate the 25th the 75th
percentile, respectively. The

median line of the box marks

the 50th percentile. The circle

in the box marks the mean.
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increase in the number of items; the median number of
eye movements was one saccade for the different nu-
merosities. This cannot be simply explained by a lack of
time to perform several eye movements because the
monkeys discriminated the numbers long before the
maximum possible response time of 1200 msec was
over. Indeed, the monkey could have made several
saccades towards the items during the match interval
before drawing a decision. Thus, they had had ample
time to serially scan the images in order to derive the
number of elements. But instead, they did not use the
available time and responded much earlier (median RT
606 msec for monkey T and 472 msec for monkey P).
That indicates that the time to judge numerosity did not
matter (at least as long as a minimum time interval has
transpired).

It is possible that covert shifts of attention indepen-
dent of eye movements may account for increasing RTs.
However, covert shifts of attention do not seem to have
a prominent effect in humans. In the study by Mandler
and Shebo (1982), the RT data for 200, 400, and 800 msec
stimulus presentation durations resulted in comparable
values (see their Figure 3B), only the error rate de-
creases with longer stimulus presentation times. Thus,
the steeply rising RT slope in humans for numerosities
higher than 4 is very likely not due to covert eye move-
ments, because the slopes are almost identical for all
three presentation times. Rather, the steep RT slope for
higher numerosities may represent conditions where
humans start to count internally (which can also be
done after stimulus offset). In addition, only shifting
eye position would bring the high acuity (foveal) portion
of the retina onto a stimulus; covert shifts of attention
would not suffice. So, it seems unlikely that covert shifts
of attention would be used to acquire detailed visual
information when there is sufficient time for eye move-
ments to be made.

Finally, support for parallel processing of numerosity
has also been found on the neural level. In the study by
Nieder et al. (2002), neurons with preference for differ-
ent numerosities were all activated on average 120 msec
after sample onset, that is, there was no systematic
increase in neural response latency with preferred num-
ber. The times when the neurons became selectively
tuned to numerosity was also independent of a neuron’s
preferred numerosity. In addition, a recent fMRI study
concludes that discrimination performance for small
numerosities cannot be accounted for by a serial atten-
tion process, but rather, by a parallel process (Piazza,
Giacomini, Bihan, & Dehaene, 2003).

Thus, both neural response latencies and the number
of eye movements argue for parallel processing of
simultaneously presented numerosities. (However, it
should be pointed out that our finding does not exclude
serial processing in other types of numerical tasks, e.g.
when monkeys have to judge ordinal relationships as in
the studies by Brannon & Terrace, 1998, 2000). But if it

is neither an object file representation with two different
subprocesses (Pylyshyn, 2003), nor a serial counting-like
process, how can the systematic increase in RTs be
explained? We suspect that the mild increase in RT is
due to a decision process rather than a numerosity
encoding process. Numerical information may be ex-
tracted at the same time for all set sizes, but it gets more
difficult to discriminate numerosities of equal numerical
distance if their absolute values become larger (‘‘numer-
ical size effect’’). Both the numerical size and distance
effects are very obvious in rhesus monkey (Nieder &
Miller, 2003; Brannon & Terrace, 2000). Interestingly, an
increase in choice RTs can also be found for purely
sensory discrimination tasks that obey Weber’s Law and,
thus, show a distance and size effect. For example, the
time required to make a correct visual spatial frequency
discrimination decreases with increasing spatial frequen-
cy difference (Greenlee & Breitmeyer, 1989). Similar RT
effects can also be found in animals, in different mo-
dalities (Talwar & Gerstein, 1998). Therefore, the most
parsimonious explanation is that a decision-making pro-
cess alone is likely to account for the RT effects found in
our monkeys. A similar conclusion has been drawn for
the symbolic discrimination performance of humans;
judgments of differences in magnitudes of numerals
are thought to be the same as the processes involved
in judgments of inequality for physical continua (Moyer
& Landauer, 1967). Moyer and Landauer (1967) hypoth-
esized that ‘‘the decision process . . . is one in which the
displayed numerals are converted to analogue magni-
tudes, and a comparison is then made between these
magnitudes in much the same way that comparisons are
made between physical stimuli such as loudness or
length of line.’’

Larger Numerosities (Beyond 4)

After the maximum of the RT function was reached at 4,
the RT curves had reached a plateau. The plateau in the
RF function coincided with the numerosity range where
the monkeys responded at chance level because they
were unable to discriminate these larger numerosities.
In the present study, the animals had to discriminate set
sizes with a numerical distance of 1, and they failed
beyond 4 due to the limits of their discrimination
capability characterized by the Weber fraction; if the
numerical distance between pairs of numerosities was
increased, the monkeys’ performance recovered (see
Nieder & Miller, 2003).

A plateau in the RT function can also be observed
in a chimpanzee (albeit at a higher numerosity of 6)
when the duration of the sample exposure is limited
to 100 msec (Tomonaga & Matsuzawa, 2002), and this
plateau corresponds also to a high percentage of errors
in numerosity discrimination. Similarly, humans engaged
in a numerosity judgment task show a saturated RT
function (inflection around 6) concordant with high
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error rates when sample exposure is temporally limited
(Mandler & Shebo, 1982). Longer RTs together with
fewer errors were observed for longer presentation
times (800 msec) of the sample displays.

Why the rhesus monkeys in the current study showed
a comparatively low inflection point remains to be
investigated. It may be related to the fact that the
monkeys had to maintain fixation during sample pre-
sentation. It may also indicate the capacity limits of
working memory, which is thought to be about four
items (Cowan, 2001; Luck & Vogel, 1997; McKone,
1995). Finally, it could indicate inferior numerosity
discrimination capabilities in monkeys compared to apes
and humans. But besides this threshold difference, the
general form or the RT functions (increase of RT and
then a plateau) are quite comparable.

Models for Analog Numerosity Judgements

Two major models have been proposed to explain the
representation of numerical information by analog mag-
nitude, an ‘‘accumulator model’’ (Meck & Church,
1983), and a ‘‘neural filtering model’’ (Dehaene &
Changeux, 1993). According to the accumulator model,
each item is encoded by an impulse of activation, which
is added to an accumulator. The magnitude in the
accumulator at the end of the count is then read into
memory, forming a representation of the number of a
set. Representations derived with the accumulator
model obey Weber’s Law; they are noisy and the vari-
ability is proportional to the magnitude. Memory is
thought to be the main source of noise rather than
the processes of accumulation or comparison (Gibbon,
1992). An attraction of the accumulator model is its
ability to encode sequential events, and support for it
comes from the Weber fraction signature of numerical
representations. However, two observations in our data
do not fit this model. First, the accumulator model is, by
definition, serial; the stimuli are ‘‘fed into’’ the accumu-
lator one after another. Our data, however, suggest a
parallel encoding of numerosity. Second, we found no
evidence for memory to be the main source of variability
(Nieder & Miller, 2003); the total variability of the
neuronal filter functions was already present at the time
of encoding (during viewing of the stimulus). Holding
the information in short-term memory did not further
increase the variability of the neuronal filter functions
(Nieder & Miller, 2003).

Another model, the ‘‘neural filtering model’’ by De-
haene and Changeux (1993), consists of four main levels.
Most relevant for the current discussion is the first level,
the numerosity detection system. Each stimulus is coded
as a local Gaussian distribution of activation by topo-
graphically organized input clusters (e.g., the retina).
Next, items of different sizes are normalized to a size-
independent code. At that stage, item size, which was
initially coded by the number of active clusters on the

retina (‘‘quantity code’’), is now encoded by the position
of active clusters on a location map (‘‘position code’’).
Clusters in the location map project to every unit of
succeeding ‘‘summation clusters,’’ whose thresholds
increase with increasing number and pool the total
activity of the location map. The summation clusters
finally project to ‘‘numerosity clusters.’’ Numerosity
clusters are equipped with appropriate central excitation
and lateral inhibition so that each numerosity cluster
responds only to a selected range of values of the total
normalized activity (i.e., their preferred numerosity).
The Dehaene and Changeux model is able to capture
several critical aspects of our results. First, it provides
approximate detection of the number of items, which is
characteristic of an analog magnitude process. Second,
the model derives numerosity in parallel, a feature we
observed both in the monkeys’ behavior and in prefron-
tal neurons (Nieder et al., 2002; Nieder & Miller, 2003).
Third, the model’s numerosity units become less selec-
tive with increasing center numerosities (i.e., the dis-
tributions become broader), that is, they obey Weber’s
Law. The model nicely describes extraction of simulta-
neously presented numerosities, but it is not clear how
serially, or even multimodally, presented items/events
would activate the network. If sequential and cross-
modal events could be implemented within the frame-
work of such a filtering model, we suspect it may
provide a full description of analog magnitude processes
in general.

Summary

The nonverbal numerical representations in monkeys
performing a delayed match-to-numerosity task are
based on analog magnitudes. There is no need to
assume a separate object tracking process (subitizing)
for small numerosities because the continuum of
small and large numbers shows a clear Weber fraction
signature. The lack of increased scanning eye move-
ments with increasing set sizes, together with indistin-
guishable neuronal response latencies for neurons with
different preferred numerosities, argues for parallel
encoding of numerical information. The slight but sig-
nificant increase in RT with increasing numerosities can
be explained by task difficulty and, consequently, time-
consuming decision processes. Whether rhesus mon-
keys may be able to switch to other coding schemes
(such as those that engage serial mechanisms) remains
to be examined by future investigations.

METHODS

Subjects and Apparatus

The subjects were two adult male rhesus monkeys
(Macaca mulatta) weighing 9.8 and 11.0 kg. Both mon-
keys were also used for electrophysiological recordings
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(Nieder et al., 2002; Nieder & Miller, 2003). The
monkeys earned their liquid consumption during the
daily experimental sessions. Care and treatment of
the monkeys were in accordance with the NIH and
MIT guidelines for animal experimentation.

The animals were trained to sit in a monkey chair
positioned at a viewing distance of 57 cm in front of a
computer screen and inside a dark booth. A head used
for fixing head position was affixed to the skull using
standard surgical procedure and under general anesthe-
sia. This enabled us to monitor eye movements with an
infrared eye tracking system (ISCAN, Burlington, MA). A
juice tube positioned at the monkey’s mouth supplied
drops of apple juice for reward. A personal computer
running the CORTEX software controlled experimental
events and behavioral data collection.

Delayed Match-to-Numerosity Task

A trial started when the monkey grasped a lever and
fixated a central fixation target. A sample display con-
taining one to seven items was shown for 800 msec.
After that, there was a memory delay (1000 msec) in
which only the gray background circle without items
was shown. Next, a test display was presented for up to
1200 msec. It was either a match (it contained the same
number of dots as the sample display) or a nonmatch.
The nonmatch stimuli for intermediate samples (1 to 6)
were one number up and down (probability = .25).
Nonmatch for ‘‘one’’ was only ‘‘two’’; for ‘‘seven’’ the
nonmatch was only ‘‘six.’’ Match and nonmatch displays
appeared pseudorandomized and with equal probability
( p = .5). If the test display was a match, monkeys re-
leased the lever before it disappeared to receive a juice
reward. If the test display was a nonmatch, the monkeys
held the lever until the second test display, which was
always a match, appeared. This also required a lever
release to receive a reward. Trials were randomized
and balanced across all relevant features. The chance
level for this task protocol was 50% correct responses.

The two basic error types included fixation breaks
(eye movements away from the fixation point) and false
responses (i.e., bar releases) to nonmatch stimuli. Fixa-
tion breaks were not counted when calculating perfor-
mance level; only incorrect numerical judgments were
counted. Both errors terminated the trial immediately
and resulted in a timeout (1.5 sec for breaking fixation
and 4 sec for a false response, respectively). The inter-
trial interval was 1.5 sec. Monkeys performed between
500 and 1000 correct trials per session (day). Monkeys
had to keep their gaze within 1.258 of the fixation point
during sample presentation and the memory delay. The
eye movements during each trial were monitored with
an infrared eye tracking system (ISCAN) at a temporal
resolution of 120 Hz and stored to disk for off-line
analysis.

Visual Stimuli

The items were black (diameter range 0.88 to 1.38 of
visual angle) and were displayed on a gray circular
background (diameter: 88 of visual angle). To prevent
the monkeys from simply memorizing the visual pat-
terns of the displays, each quantity was tested with 100
different images per session (by randomly varying the
size and location of the items) and the sample and test
displays that appeared on each trial were never identical.

Efforts were made to exclude the possibility that the
monkeys could perform the discrimination by attending
low-level visual features that happen to correlate with
numerosity. The spatial arrangement of the items was
randomized on a 5 by 5 matrix (except when controlled
for linear or shapelike arrangement). The monkeys were
trained with ‘‘standard’’ stimuli (Figure 1B), which com-
prised dots of different sizes. On average, the surface
area, the circumference, and the density of the items
increased with increasing numerosity for the ‘‘standard’’
stimuli. Therefore, controls were included with displays
in which the total area (‘‘equal area’’) or the total
circumference (‘‘equal circumference’’) was equated
across different quantities. In addition, we controlled
for dot density effects by applying ‘‘high-density’’ and
‘‘low-density’’ protocols. The dot density was deter-
mined by calculating the average distance between the
dots. For the ‘‘high-density’’ stimuli, the dots had an
average distance of <1.48 of visual angle (measured
from the dots’ center). For the ‘‘low-density’’ stimuli,
the items were arranged with an average distance of
>2.58 of visual angle. Moreover, we displayed different
geometric objects (squares, bars, triangles, ovals, dots)
of different sizes in the ‘‘variable features’’ protocol.
Finally, the dots were linearly arranged in the ‘‘linear’’
protocol, or three dots were arranged as triangle, four
dots as quadrangle, and five dots as pentagon in the
‘‘shape’’ protocol. There was a total of seven numeros-
ities and all seven were used in each session (except for
the ‘‘line’’ vs. ‘‘shape’’ stimuli) and all displays were
newly generated for each session by pseudorandomly
shuffling all relevant item features (e.g., position, size,
identity).

Quantification of Psychometric Functions

We derived psychometric functions that described the
relation between the number of items and the monkeys’
ability to respond correctly to it. Since the delayed
match-to-sample paradigm allows either a correct or
an incorrect response per trial, a performance probabil-
ity of .5 correct responses (or 50%) indicates chance
level, and a probability of 1.0 represents perfect discrim-
ination (100% correct). The dataset in our experiments
is described by three vectors: x will denote the numer-
osity tested, n the number of trials per numerosity, and
y the monkeys’ correct responses.
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To derive performance thresholds and other quanti-
tative measures, a model psychometric function P that
specifies the relationship between the probability of a
correct response and the number of items x was fitted to
the data using a maximum-likelihood technique ( Wich-
mann & Hill, 2001a, 2001b; Harvey, 1986).

PðxÞ ¼ gþ ð1� �� gÞFðx;a;bÞ; ð1Þ

where the sigmoid function F is a two-parameter logistic
function specified by a (the number of items at the
halfway point) and b (the slope of the function). The
lower bound of P is given by parameter g (the probabi-
lity of being correct by chance, ‘‘guess rate’’) which was
fixed at .5. The upper bound is given by 1 � l, where l

corresponds to the miss rate (‘‘lapse rate’’); it was initially
set to 0.01. We used the program ‘‘psignifit’’ (formerly
known as ‘‘psychofit’’) by Jeremy Hill; it is available on
http://bootstrap-software.org.

Determination of Eye Movements

The occurrence of saccades was determined by means of
velocity changes of the eye traces. The threshold for eye
movement to be defined as a saccade was determined
by analyzing velocity values on a frame-by-frame basis
(120 Hz temporal resolution) while the monkey fixated
the fixation target (i.e., during the fixation, the sample,
and the delay epochs). The 85th percentile of all velocity
values for all correct trials per session for these epochs
was taken as threshold value. The 85th percentile
threshold allowed for microsaccades that could occur
during fixation. Eye velocities exceeding this threshold
value from the beginning of the test display to the bar
release of the monkey were defined as saccades. Sac-
cades were always made to individual items of the
display (see examples in Figure 6).
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