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Abstract

The ability to group items and events into functional categories is a
fundamental characteristic of sophisticated thought. It is subserved by
plasticity in many neural systems, including neocortical regions (sen-
sory, prefrontal, parietal, and motor cortex), the medial temporal lobe,
the basal ganglia, and midbrain dopaminergic systems. These systems
interact during category learning. Corticostriatal loops may mediate re-
cursive, bootstrapping interactions between fast reward-gated plastic-
ity in the basal ganglia and slow reward-shaded plasticity in the cortex.
This can provide a balance between acquisition of details of experiences
and generalization across them. Interactions between the corticostriatal
loops can integrate perceptual, response, and feedback-related aspects
of the task and mediate the shift from novice to skilled performance.
The basal ganglia and medial temporal lobe interact competitively or
cooperatively, depending on the demands of the learning task.
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INTRODUCTION

Although our brains can store specific experi-
ences, it is not always advantageous for us to
be too literal. A brain limited to storing an in-
dependent record of each experience would re-
quire a prodigious amount of storage and bog us
down with details. We have instead evolved the
ability to detect the higher-level structure of ex-
periences, the commonalities across them that
allow us to group experiences into meaningful

categories and concepts. This process imbues
the world with meaning. We instantly recog-
nize and respond appropriately to objects, sit-
uations, expressions, etc., even though we have
never encountered those exact examples before.
It stimulates proactive, goal-directed thought
by allowing us to generalize about (to imag-
ine) future situations that share fundamental el-
ements with past experience. Imagine the men-
tal cacophony without this ability. The world
would lack any deeper meaning. Experiences
would be fragmented and unrelated. Things
would seem strange and unfamiliar if they dif-
fered even trivially from previous examples.
This situation describes many of the cogni-
tive characteristics of neuropsychiatric disor-
ders such as autism.

Here, we review how categories are learned
by the brain. We begin with a brief definition
of categories and describe how category learn-
ing is studied. We argue that categorization is
not dependent on any single neural system, but
rather results from the recruitment of a vari-
ety of neural systems depending on task de-
mands. We then describe the primary brain
areas involved in categorization learning: the
visual cortex, the prefrontal and parietal cor-
tices, the basal ganglia, and the medial temporal
lobe. This leads to a discussion and hypothe-
ses about how neural systems interact during
category acquisition, which focus on interac-
tions within and between corticostriatal loops
connecting cortex and basal ganglia and be-
tween the basal ganglia and the medial tem-
poral lobe. We end by summarizing principles
by which the brain learns categories and other
abstractions.

Categories

Categories represent our knowledge of group-
ings and patterns that are not explicit in the
bottom-up sensory inputs. A simple example is
crickets sharply dividing a range of pure tones
into mate versus bat (a predator) (Wyttenbach
et al. 1996). A wide range of tones on either side
of a sharp boundary (16 kHz) are treated equiv-
alently, whereas nearby tones that straddle it are
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ITC: inferotemporal
cortex

treated differently. This grouping of experience
by functional relevance occurs at many levels of
processing and for a wide range of phenomena
from more literal (e.g., color) to abstract (e.g.,
peace, love, and understanding). Many categor-
ical distinctions are innate or result from many
years of experience (e.g., faces), but key to hu-
man intelligence is our ability to learn new cate-
gories quickly, even when they are multivariate
and abstract (e.g., Free Jazz, gastropub). Mahon
& Caramazza (2009) and Martin (2007), among
others, have published excellent reviews of in-
nate or well-learned categories. We focus on
category learning.

Examples of category learning tasks are
shown in Figure 1. Many tasks use novel stim-
uli formed according to a particular perceptual
manipulation and then grouped according to an
experimenter-defined boundary. Some exam-
ples of stimuli used in tasks include prototypes,
information integration, and stimuli morphed
along a continuum (Figure 1a–c, respectively).
We can also group events and actions into cat-
egories by more abstract properties or rules,
which can range from simple deterministic rules
based on a single easily identified dimension
to more complex situations in which rules may
be probabilistic, or complex (e.g., a conjunctive
or disjunctive rule), or require identification of
an abstract feature not actually present in the
physical item (e.g., the rule “same” or “differ-
ent” (Figure 1e). Categorization can even be
completely arbitrary (Figure 1d ). For exam-
ple, imagine a group of students, half of whom
are enrolled in one section of a course and half
in the other section. The students within each
section likely do not share any particular per-
ceptual characteristics that are not shared by
students in the other section. However, this cat-
egorization scheme has great utility for predict-
ing which students are likely to attend class in
a particular room at a particular time.

BRAIN AREAS INVOLVED IN
CATEGORY LEARNING

Not surprisingly given the variety of above ex-
amples, category learning likely involves many

brain systems including most of the neocortex,
the hippocampus, and the basal ganglia. We re-
view which types of category tasks recruit each
region of the brain and describe each region’s
putative role. We make no claims to an ex-
haustive treatment; categorical representations
are likely in many domains and their respective
neural systems. For example, evidence indicates
that the amygdala participates in generalization
of knowledge about fearful or aversive types of
stimuli (Barot et al. 2008).

Visual Cortex

We focus on the visual system, the best-studied
modality. However, similar processes are likely
present in other sensory modalities, including
the auditory (Vallabha et al. 2007), the so-
matosensory (Romo & Salinas 2001), and the
olfactory (Howard et al. 2009) systems.

Likely candidates for visual categorization
are areas at the highest levels of visual process-
ing. One is the inferior temporal cortex (ITC),
whose neurons have complex shape selectivity
(Desimone et al. 1984, Logothetis & Sheinberg
1996, Tanaka 1996). Investigators have known
about neurons with category-like tuning prop-
erties since the seminal work on “face
cells” by Gross and colleagues (Desimone
et al. 1984). The human fusiform face area
(Kanwisher et al. 1997), an ITC area with a
preponderance of face cells, is recruited dur-
ing learning of new face categories (DeGutis
& D’Esposito 2007). Inferior temporal neurons
in trained monkeys are specifically activated by
trees or fish and show relatively little differen-
tiation within those categories (Vogels 1999).
Microstimulation of monkey ITC can facilitate
visual classification of novel images (Kawasaki
& Sheinberg 2008).

However, the ITC may play less of a role
in learning explicit representations of category
membership and more of a role in high-level
analysis of features that contribute to cate-
gorization. ITC neurons often do not com-
pletely generalize among category members;
they retain selectivity for underlying percep-
tual similarity between individuals (Freedman
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Figure 1
Categorization tasks. (a) Dot pattern prototype learning. A prototypical stimulus is selected (left), and category exemplars (right) are
formed by randomly moving dots. Large amounts of movement (bottom) result in high distortion stimuli; smaller amounts of movement
(top) result in low distortion stimuli. (b) Information integration task. Stimuli are formed by varying two incommensurate features: angle
from vertical and width of the bars. Illustrated is a diagonal decision bound between categories; to learn the categorization successfully,
subjects must integrate the knowledge of angle and width. (c) Cat-dog categorization task. Stimuli are formed as continuous morphs
along each of the lines between prototype stimuli. The categorical decision bound arbitrarily divides the continuous perceptual space
into two or three domains, or categories. (d ) Arbitrary categorization task. Each stimulus is individually probabilistically associated with
the categories; stimuli within a category do not share identifying common features. (e) “Same - different” rule task. Monkeys responded
on the basis of whether novel pairs of images matched or did not match, depending on which rule was in effect.

et al. 2003, Jiang et al. 2007). They also em-
phasize certain critical stimuli or diagnostic
features for the categories and show greater
activity for stimuli near category boundaries
(DeGutis & D’Esposito 2007, Freedman et al.

2003, Sigala & Logothetis 2002, Baker et al.,
2002).

Simple shape-based perceptual categories
may be acquired in earlier visual areas. A com-
monly used task is the dot pattern prototype
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PFC: prefrontal
cortex

learning task (see Figure 1a); subjects learn
a single category (e.g., “A” versus “not A”)
via simply observing category members. This
type of relatively simple category learning may
depend on plasticity in the early visual sys-
tem locus. fMRI studies show activity changes
after dot pattern learning in the extrastri-
ate visual cortex, typically around BA 18/19
and roughly corresponding to visual area V2
(Aizenstein et al. 2000; Reber et al. 1998, 2003).
Performance on this task is preserved in per-
sons with amnesia (Knowlton & Squire 1993;
for a comprehensive review, see Smith 2008),
indicating independence from the medial tem-
poral lobe memory system, and is preserved
in Parkinson disease (Reber & Squire 1999),
indicating independence from corticostriatal
systems. However, patients with moderate-
severity Alzheimer disease, which can include
damage to extrastriate visual cortex, are im-
paired (Keri et al. 1999). Other categorization
tasks, however, do recruit corticostriatal and/or
medial temporal lobe systems, especially more
complex category learning that involves learn-
ing via trial-and-error feedback and learning
of multiple categories (Casale & Ashby 2008,
Little & Thulborn 2005, Vogels et al. 2002).

Plasticity in visual cortex likely involves lo-
cal changes in the strength of cortical synapses
owing to Hebbian learning (McClelland 2006)
subserved by mechanisms of long-term po-
tentiation. Sensory cortex typically emphasizes
stability over plasticity, particularly in adults.
Thus, perceptual categories, especially in early
sensory cortex, do not usually result from just
casual or limited amounts of passive experience
with a stimulus.

Prefrontal Cortex

The prefrontal cortex occupies a far greater
proportion of the human cerebral cortex than
it does in other animals, which suggests that
it might contribute to those cognitive capaci-
ties that separate humans from animals (Fuster
1995, Miller & Cohen 2001). It seems more
readily modifiable by experience than does the
sensory cortex.

For example, Freedman and colleagues
(2001, 2002, 2003) trained monkeys to cate-
gorize stimuli along a morphing continuum
of different blends of “cats” and “dogs” (see
Figure 1c) and found a large proportion
of randomly selected lateral prefrontal cortex
(PFC) neurons with hallmarks of category rep-
resentations: sharp differences in activity to
similar-looking stimuli across a discrete cate-
gory boundary yet similar activity to different-
looking members of the same category.
Simultaneous recording from the PFC and
anterior-ventral ITC revealed weaker category
effects in the ITC (they retained more selectiv-
ity for individual members) and that category
signals appeared with a shorter latency in the
PFC than in the ITC, as if it were fed back
from the PFC (Freedman et al. 2003, Meyers
et al. 2008). Human imaging studies found that
ITC is sensitive to perceptual features of stim-
uli and perceptual distance between stimuli, but
only PFC represents the boundary between ac-
tual categories or crucial conjunctions between
features ( Jiang et al. 2007, Li et al. 2009).

PFC neurons also reflect abstract rule-based
categorical distinctions. For example, Wallis
and Miller (Muhammad et al. 2006, Wallis et al.
2001, Wallis & Miller 2003,) trained monkeys
to apply either a “same” or “different” rule to
novel pairs of pictures (see Figure 1e). Many
PFC neurons conveyed which rule was in ef-
fect independent of which specific cue signaled
the rule, was not linked to the behavioral re-
sponse, and was unaffected by the exact pic-
tures the monkeys were judging. By contrast,
the rules had relatively little effect in the ITC,
even though the ITC is directly connected with
the lateral PFC and it is critical for visual anal-
ysis of the pictures (Muhammad et al. 2006).

Parietal Cortex

The parietal cortex seems to emphasize visu-
ospatial functions and linking information from
perceptual cortex with potential responses.
Many studies have examined its neural se-
lectivity by having subjects discriminate the
direction of motion of moving dots. Many
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MTL: medial
temporal lobe

direction-selective neurons are in extrastriate
area V5/MT (Newsome et al. 1986) and project
to the lateral inferior parietal lobe and insula,
which integrate overall movement pattern (Ho
et al. 2009, Rorie & Newsome 2005). Freedman
& Assad (2006) trained monkeys to classify 360◦

of motion direction into two categories and
found that category membership was strongly
reflected in the lateral inferior parietal region,
but much less so in V5/MT. The respective
roles of the parietal and frontal cortices in cat-
egorization and visual cognition in general re-
main to be determined, but several studies indi-
cate a close functional link between the lateral
inferior parietal lobe and the PFC (Buschman
& Miller 2007, Chafee & Goldman-Rakic
2000).

Premotor and Motor Cortex

Categorical decision tasks also involve selection
and execution of an appropriate behavior. This
recruits premotor cortex (PMC) and primary
motor cortex within the frontal lobe. Category
learning can also result in plasticity in brain sys-
tems involved in attention and eye movements
(Blair et al. 2009). Little & Thulborn (2005)
found changes in frontal eye field and supple-
mentary eye field activity across training in a dot
pattern categorization task that likely reflected
improved visual scanning of the stimuli.

As expertise is developed, reliance on motor
systems increases and reliance on other systems
decreases. Indeed, PFC damage preferentially
affects new learning: Animals and humans can
still engage in complex behaviors as long as they
were well learned before the damage (Dias et al.
1997, Murray et al. 2000, Shallice 1982). PFC
neurons are more strongly activated during new
learning than during execution of familiar tasks
(Asaad et al. 1998). There are stronger signals
in the dorsal PMC than in the PFC when hu-
mans performed familiar versus novel classifica-
tions (Boettiger & D’Esposito 2005) and when
monkeys performed familiar abstract rules
(Muhammad et al. 2006). Thus, the PFC may
acquire new categories, but other areas such as

the PMC may execute them once they become
familiar.

Hippocampus and the
Medial Temporal Lobe

The medial temporal lobe (MTL) has anatom-
ical and functional connections with cortex and
seems specialized for rapid learning of indi-
vidual instances (O’Reilly & Munakata 2000).
The circuitry of the MTL and cortex forms a
loop: Information from broad neocortical re-
gions across the parietal, frontal, and tempo-
ral cortices projects to the entorhinal region of
the parahippocampal gyrus. From the entorhi-
nal cortex, the primary projections pass to the
dentate gyrus, the CA3 field of the hippocam-
pus, the CA1 field, and back to the entorhinal
cortex. The CA3 field contains autoassociative
recurrent links, which allow association forma-
tion during encoding and pattern completion
during recall (Becker & Wojtowicz 2007, Gluck
et al. 2003, O’Reilly & Munakata 2000).

Several lines of evidence suggest multiple
roles for the MTL in categorization. Catego-
rization can make use of the MTL’s ability to
learn individual instances. One task that re-
quires instance learning is the arbitrary cat-
egorization task (Figure 1d ), in which the
category membership of each item must be
remembered individually. fMRI studies find
that MTL (among other systems, including
corticostriatal systems) is often recruited dur-
ing these tasks (Poldrack et al. 1999, 2001;
Seger & Cincotta 2005). Likewise, monkey
neurophysiology studies found that neurons in
the hippocampus and temporal cortex show
category-specific activity after training mon-
keys to group arbitrary stimuli (Hampson et al.
2004). Kreiman et al. (2000) found neurons in
the human MTL that were selective for di-
verse pictures of familiar concepts such as Bill
Clinton. The MTL’s instance-learning capac-
ity may also be invoked to store exceptions to
rules and other categorical regularities (Love
et al. 2004). Some degree of instance memory
may be required in all categorization tasks that
use novel stimuli; the MTL may be required to
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set up a memory representation of each stimu-
lus that can then be accessed by other systems
(Meeter et al. 2008).

Another important potential contribution of
the MTL follows from observations that infor-
mation acquired via the MTL can be trans-
ferred to new situations. One example is ac-
quired equivalence. For example, if a subject
learns that stimulus A is in categories 1 and 2,
and stimulus B is in category 1, they can rea-
sonably infer that stimulus B might also be in
category 2. The MTL is involved in these tasks
(Myers et al. 2003, Shohamy & Wagner 2008).

The Basal Ganglia
and Corticostriatal Loops

The basal ganglia are a collection of subcorti-
cal nuclei that interact with cortex in corticos-
triatal loops. Cortical inputs arrive largely via
the striatum and ultimately are directed back
into the cortex via the thalamus. The basal gan-
glia maintain a degree of topographical separa-
tion in different loops, ensuring that the output
is largely to the same cortical areas that gave
rise to the initial inputs to the basal ganglia
(Alexander et al. 1986, Hoover & Strick 1993,
Kelly & Strick 2004, Parthasarathy et al. 1992).
The frontal cortex receives the largest por-
tion of BG outputs, suggesting some form of
close collaboration between these structures
(Middleton & Strick 1994, 2002). However, al-
most all cortical regions participate in corticos-
triatal loops (Flaherty & Graybiel 1991, Kemp
& Powell 1970). Although there is overlap be-
tween the loops at their boundaries, it is useful
to talk of four loops: executive, motivational,
visual, and motor (Lawrence et al. 1998, Seger
2008), as illustrated in Figure 2. The basal gan-
glia exert a tonic inhibition on cortex; they se-
lectively and phasically release the cortex to al-
low for selection of a movement (Humphries
et al. 2006) or cognitive strategy (Frank 2005).
In categorization tasks, this function may be re-
cruited to help with selection of both an ap-
propriate category representation and related
strategies or behaviors (Seger 2008).

Visual
loop

MotorMotor
looploop

Motor
loop

MotivationalMotivational
looploop

Motivational
loop Executive

loop

Figure 2
Corticostriatal loops. The motor loop (blue) connecting the motor cortex with
the posterior putamen. Executive loop ( green) connects the prefrontal cortex
and the parietal cortex with the anterior caudate nucleus. The motivational
loop (red ) connects the ventral striatum with the orbitofrontal cortex. The
visual loop (orange) connects extrastriate and inferotemporal cortices with the
posterior caudate nucleus.

The basal ganglia are active in a wide va-
riety of categorization tasks (Nomura et al.
2007; Poldrack et al. 1999, 2001; Seger &
Cincotta 2005; Zeithamova et al. 2008), par-
ticularly those that require subjects to learn
via trial and error (Cincotta & Seger 2007,
Merchant et al. 1997). Performance on these
tasks is impaired in patients with compromised
basal ganglia functions owing to Parkinson and
Huntington disease (Ashby & Maddox 2005,
Knowlton et al. 1996, Shohamy et al. 2004).
The roles of individual corticostriatal loops and
their interactions during categorization are dis-
cussed further below.
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Midbrain Dopaminergic System and
Reinforcement Learning Mechanisms

Any form of supervised (reward-based) learn-
ing, including category learning, depends on
the midbrain dopaminergic brain systems (the
ventral tegmental area and the substantia ni-
gra, pars compacta) (Schultz et al. 1992). Neu-
rons in these areas show activity that seems
to correspond to the reward prediction error
signals suggested by animal learning models
(Hollerman & Schultz 1998, Montague et al.
2004; but see Redgrave & Gurney 2006). They
activate and release dopamine widely through-
out the basal ganglia and cortex (especially in
the frontal lobe) whenever animals are unex-
pectedly rewarded, and they pause when an
expected reward is withheld. Over time the
cells learn to respond to an event that directly

COMPUTATIONAL FACTORS
IN CATEGORY LEARNING

Generalized knowledge versus memory for specific instances. The
complementary memory systems framework notes that gener-
alized knowledge (e.g., the overall concept of a chair) conflicts
with specific memories (e.g., one’s own office chair) (O’Reilly &
Munakata, 2000). Categorization learning emphasizes the acqui-
sition of generalized knowledge about the world but also requires
some specific representations, for example in the situation of ar-
bitrary categories or in representing exceptions to general rules.

Fast versus slow learning. Fast learning has obvious advantages:
One can learn to acquire resources and avoid obstacles faster
and better than competitors. But fast learning comes at a cost;
it does not allow the benefits that come from generalizing over
multiple experiences, so by necessity it tends to be specific and
error prone. For example, consider conditioned taste aversion:
a one-trial and often erroneous aversion for a particular food.
Extending learning across multiple episodes allows organisms to
pick up on the regularities of predictive relationships and leave
behind spurious associations and coincidences. This allows cate-
gory formation by allowing learning mechanisms to identify the
commonalities across different category members. We suggest
that the brain balances the advantages and disadvantages of fast
versus slow learning by having fast plasticity mechanisms (large
changes in synaptic weights) in subcortical structures train slower
plasticity (small weight changes) in cortical networks.

predicts a reward: The event stands in for the
reward (Schultz et al. 1993). Functional imag-
ing has found that the basal ganglia, a primary
target of dopamine neurons, are also sensitive
to prediction error (Seymour et al. 2007).

Cortical inputs converge onto the dendrites
of striatal spiny cells along with a strong
input from midbrain dopaminergic neurons.
Dopamine is required for synapse strengthen-
ing or weakening in the striatum by long-term
depression or potentiation, respectively (Cal-
abresi et al. 1992, Kerr & Wickens 2001, Otani
et al. 1998). These anatomical and neurophysi-
ological properties suggest that the striatum has
an ideal infrastructure for rapid, reward-gated,
supervised learning that quickly forms repre-
sentations of the patterns of cortical connec-
tions that predict reward (Houk & Wise 1995,
Miller & Buschman 2007). Functional imaging,
neuropsychological, and computational studies
suggest that feedback-based category learning
via trial and error depends on both dopamine
and the basal ganglia (Shohamy et al. 2008).

INTERACTION BETWEEN
NEURAL SYSTEMS DURING
CATEGORY LEARNING

Above, we discussed how categorization learn-
ing relies on multiple neural systems. For ex-
ample, a visual categorization task may recruit
the visual cortex and the MTL to represent
and memorize the individual stimuli and facil-
itate processing of relevant features, the pre-
frontal cortex to learn and represent categoriza-
tion rules and strategies, and the basal ganglia,
parietal lobe, and motor cortices to make de-
cisions and select behavioral responses on the
basis of categorical information. In this section
we discuss several ways that these neural sys-
tems may interact during category learning.

Interactions Between Fast
Subcortical Plasticity and
Slower Cortical Plasticity

A key issue in learning is the need to bal-
ance the advantages and disadvantages of fast
versus slow plasticity (see sidebar, Compu-
tational Factors in Category Learning). Fast
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plasticity (large changes in synaptic weights
with each episode) in a neural network has ad-
vantages in rapid storage of relevant activity
patterns (and quick learning). But slow plas-
ticity (small weight changes) allows networks
to generalize; gradual changes result in neu-
ral ensembles that are not tied to specific in-
puts but instead store what is common among
them. One possible solution is to have fast
plasticity and slow plasticity systems interact
(McClelland et al. 1995, O’Reilly & Munakata,
2000). For example, McClelland et al. (1995)
suggested that long-term memory consolida-
tion results from fast plasticity in the hippocam-
pus, the output of which trains slower plastic-
ity cortical networks that gradually elaborate
the memories and link them to others. A simi-
lar relationship between the cerebellum and the
cortex could underlie motor learning (Houk &
Wise 1995). We suggest that an interaction be-
tween fast plasticity in the basal ganglia and slow
plasticity in the cortex underlies many forms
of category learning and abstraction (Miller &
Buschman 2007).

Fast and slow plasticity may arise from dif-
ferent applications of the dopaminergic teach-
ing signal. Both the cortex and the basal
ganglia receive projections from midbrain
dopaminergic neurons, but dopamine input to
cortex is much lighter than that into the stria-
tum (Lynd-Balta & Haber 1994). Dopamine
projections also show a gradient in connectiv-
ity with heavier inputs in the PFC that drop
off posteriorally (Goldman-Rakic et al. 1989,
Thierry et al. 1973). This observation may ex-
plain why the PFC seems to show a greater deal
of experience-dependent selectivity than does
the visual cortex. In the striatum, the dopamine
influence may be greater still. Dopamine neu-
rons terminate near the synapse between a cor-
tical axon and striatal spiny cell, a good position
to gate plasticity between the cortex and the
striatum. DA neurons synapse on the dendrites
of cortical neurons, and therefore may have a
lesser influence. Thus, whereas plasticity in the
striatum may be fast and reward-gated in the
cortex, it may be slower and reward-shaded.
The striatum may be better suited to learn

details, the specific cues, responses, etc. that
predict rewards, whereas the cortex acquires the
commonalities among them that result in cate-
gories and abstractions (see Daw et al. 2005).

Some evidence suggests this notion.
Pasupathy & Miller (2005) found that during
conditional visuomotor learning in monkeys,
striatal neural activity showed rapid, almost
bistable, changes compared with a much slower
trend in the PFC. Seger & Cincotta (2006)
found that as humans learn rules, changes in
striatal activity precede those in the frontal
cortex. Abstract rules are more strongly rep-
resented (more neurons and stronger effects)
and appear with a shorter latency in the frontal
cortex than in the dorsal striatum (Muhammad
et al. 2006), which is consistent with a greater
cortical involvement in abstraction.

Under this view, normal learning depends
on balance between the fast and the slow plas-
ticity systems. An imbalance between these sys-
tems that causes basal ganglia plasticity to be-
come abnormally strong and overwhelm the
cortex might result in an autistic-like brain that
is overwhelmed with details and cannot gen-
eralize. Recent work by Bear and colleagues
may provide a molecular link (Dolen et al.
2007). They found that many psychiatric and
neurological symptoms of Fragile X, including
autism, can be explained by abnormally high
activation of metabotropic glutamate receptor
mGluR5. MGluR5 colocalizes with dopamine
receptors in striatal neurons and is thought to
regulate dopamine-dependent plasticity. The
idea is that too much mGluR5 boosts dopamin-
ergic plasticity mechanisms in striatum and
overwhelms the cortex, resulting in an inabil-
ity to generalize and fractionated, piecemeal
cognition.

Interactions Within Corticostriatal
Loops: Recursive Processing
and Bootstrapping

As noted above, the cortex forms closed
anatomical loops with the basal ganglia: Chan-
nels within the basal ganglia return outputs, via
the thalamus, to the same cortical areas that
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gave rise to their initial cortical input (Hoover
& Strick 1993, Kelly & Strick 2004). Closed
loops suggest recursivity, bootstrapping oper-
ations in which the results from one iteration
are fed back through the loop for further pro-
cessing and elaboration. Some form of recursive
processing must underlie the open-ended na-
ture of human memory and thought. We sug-
gest that recursive interactions between basal
ganglia fast plasticity and slow cortical plastic-
ity underlie construction of categories and ab-
stractions. This idea may be reflected in a hall-
mark of human intelligence: It is easiest for us to
understand new categories and concepts if they
can be grounded first in familiar ones. We learn
to multiply through serial addition, and we un-
derstand quantum mechanics by constructing
analogies to waves and particles.

Interactions Between
Corticostriatal Loops

Although basal ganglia–PFC connections are
particularly prominent, the basal ganglia inter-
act with all cortical regions. Figure 2 illustrates
the major patterns of projection, broken into
loops. Functional imaging has shown that all
four loops are recruited during categorization
learning, albeit in different roles (Seger 2008,
Seger & Cincotta 2005). The visual loop re-
ceives information from visual cortex; this in-
formation feeds forward to the executive and
motor loops, providing a potential mechanism
for selection of appropriate responses (Ashby
et al. 1998, 2007), as well as back to visual cortex
where it may assist in refinement of visual pro-
cessing. The executive loop is associated with
functions necessary for categorization learning,
including feedback processing, working mem-
ory updating, and set shifting. The motor loop
is involved in selecting and executing appropri-
ate motor behavior, including selection of the
motor response used to indicate category mem-
bership. The motivational loop is involved in
processing reward and feedback.

The loops interact during learning. Seger
and colleagues (2010) examined interac-
tions between corticostriatal loops during

categorization using Granger causality model-
ing and found patterns consistent with directed
influence from the visual loop to the motor
loop, and from the motor loop to the execu-
tive loop. This pattern is consistent with the
processes required during each step of a typ-
ical categorization trial: processing the visual
stimulus, preparing and executing the motor
response indicating category membership, and
receiving and processing feedback.

Corticostriatal loops also interact across
many experiences or trials as subjects progress
from being novices to experts in a categoriza-
tion domain. The executive and motivational
loops are most important early, when acquisi-
tion of information is fastest and feedback pro-
cessing is the most useful, whereas the motor
loop rises in importance as expertise is acquired
(Williams & Eskandar 2006). The anterior cau-
date (executive loop) is sensitive to learning
rate; activity is greatest when learning is occur-
ring most rapidly (Williams & Eskandar 2006)
and there is the greatest amount of prediction
error (difference between expected outcome
and actual outcome) to serve as a learning sig-
nal (Haruno & Kawato 2006). In contrast, the
putamen (motor loop) is more engaged late in
learning, when the category membership (and
associated reward or feedback) is well learned.
(Seger et al. 2010, Williams & Eskandar 2006).
This idea is consistent with observations that
the rodent dorsomedial striatum (equivalent to
primate anterior caudate) is important for ini-
tial goal-oriented learning, whereas dorsolat-
eral striatum (equivalent to primate posterior
putamen) is important for later habit formation
(Yin & Knowlton 2006).

Finally, corticostriatal loops can compete
depending on the material being learned. Cate-
gories that can be learned via explicit rule-based
processes tend to rely on the PFC and ante-
rior caudate regions involved in the executive
loop. Other category structures (such as infor-
mation integration categories; Figure 1b ) that
are learned via more implicit processes rely on
the visual loop. The COVIS model (Ashby et al.
1998, 2007) proposes that the executive and
visual loops compete for dominance in
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controlling categorization. This proposal is
supported by studies examining individual dif-
ferences in prefrontal capacity: Subjects with
high capacity tend to favor the rule-learning
system and are relatively impaired at learning
an information integration task that requires
the more implicit strategy to achieve optimal
performance (Decaro et al. 2008).

Interactions Between the Medial
Temporal Lobe and Basal Ganglia

Both MTL and BG systems can form relation-
ships between stimuli and categories. As de-
scribed above, the MTL does so via explicit
representation of the stimulus and its arbi-
trary category membership, whereas the basal
ganglia map perceptual commonalities of cat-
egories to their associated behaviors. Human
imaging studies suggest competition between
MTL and BG systems during category learn-
ing: As BG activity increases, MTL activity de-
creases (Poldrack et al. 1999, 2001). However,
relative decreases in MTL activity are difficult
to interpret in functional imaging studies; ap-
parent suppression of the MTL may simply be
due to lower activity during categorization than
during the comparison tasks (Law et al. 2005).
Stronger evidence for competition between the
two systems comes from lesion and pharma-
cological manipulations. When MTL is dam-
aged or inhibited, the BG can take over a larger
role in the control of behavior (Frank et al.
2006). Subjects with basal ganglia damage due
to Parkinson disease recruit MTL to a larger ex-
tent than do controls during probabilistic clas-
sification category learning (Moody et al. 2004).

The BG and MTL may not invariably
compete during categorization learning. Some
studies show parallel recruitment of both
systems, implying independent or cooperative
contributions (Cincotta & Seger 2007). The
MTL may be required initially to set up new
individual item representations of stimuli
(Meeter et al. 2008). These stimulus represen-
tations may then be accessible to BG systems
for forming associations between stimuli and
categories. Consistent with this theory,

Poldrack et al. (2001) found transient MTL
activity at the beginning of a probabilistic
classification task, which was then followed
by a relative decrease in MTL activity and
increase in BG activity.

It is unclear how interaction between MTL
and BG is mediated. Some evidence indicates
that the relationship is bilateral: Increases in
BG activity lead to decreases in MTL activity
and vice versa (Lee et al. 2008). Some research
indicates that PFC is involved in this process
(Poldrack & Rodriguez 2004). During distrac-
tion with PFC demanding dual tasks, catego-
rization performance becomes more strongly
related to striatal activity and less related to
MTL (Foerde et al. 2006). In emotional sit-
uations, the amygdala can likely mediate the
balance between systems (Wingard & Packard
2008).

CONCLUSION: PRINCIPLES
OF CATEGORY LEARNING
IN THE BRAIN

We are only beginning to understand how the
brain learns categories. But we can posit some
potential principles and hypotheses.

� Categorization involves both stimulus
representations (e.g., of features, cen-
tral tendencies, and degree of variability)
and processes (e.g., decision-making pro-
cesses establishing a criterion or rule for
category membership) that recruit differ-
ent neural systems depending on the type
of category and how it is used.

� The brain does not have one single “cat-
egorization area.” Categories are rep-
resented in a distributed fashion across
the brain, and multiple neural systems
are involved. Many of the systems in-
volved in categorization have been iden-
tified in the multiple memory systems
framework (Ashby & O’Brien 2005,
Poldrack & Foerde 2008, Smith &
Grossman 2008). Categorization tasks
are not process-pure: Multiple systems
may be recruited to solve any given cate-
gorization problem.
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� Category learning withstands fundamen-
tal computational constraints. A trade-off
exists between generalizing across pre-
vious experience and remembering spe-
cific items and events. This trade-off
may be solved by having fast plasticity
(large synaptic weight changes) in subcor-
tical systems (e.g., basal ganglia and hip-
pocampus) train slower plasticity (smaller
weight changes) in the cortex, the lat-
ter of which builds the category repre-
sentations by finding the commonalities
across the specifics learned by the former.
Normal learning depends on balance be-
tween these mechanisms. The balance
can change depending on task demands.
Certain neuropsychiatric disorders, such
as autism, may result from an imbalance
that causes the faster plasticity mecha-
nisms in the subcortex to overwhelm the
slower cortical plasticity, which could re-
sult in a brain that has great difficulty
generalizing.

� Category learning may depend on recur-
sive, bootstrapping interactions within
corticostriatal loops. The open-ended na-
ture of human thought likely depends on
some form of recursive processing, and
the closed anatomical loops the basal gan-
glia form with the cortex seem well suited.
Different phases of learning and different
aspects of a categorization task may also
involve interactions across different cor-
ticostriatal loops.

� Category learning cuts across distinctions
between implicit and explicit systems and
declarative and nondeclarative memory
systems. Explicit systems are those that
are associated with some degree of con-
scious penetrability (Seger 1994). In cate-
gorization, these include PFC systems re-
cruited in explicit rule-learning tasks, as

well as MTL systems that result in con-
sciously accessible episodic memories.
Most other systems are typically consid-
ered to be implicit or unconscious (e.g.,
perceptual cortex); however, some (no-
tably the corticostriatal loops) can be re-
cruited in both explicit and implicit tasks.
The declarative–nondeclarative distinc-
tion differs from the explicit–implicit
distinction because it separates MTL-
dependent memory processes (declar-
ative) from other learning systems
(nondeclarative). Categorization tasks
may recruit various combinations of im-
plicit and/or explicit, declarative and/or
nondeclarative systems. For example,
simple dot pattern learning is largely im-
plicit (it occurs without intention to learn
or awareness of learning) and nondeclar-
ative (it is independent of MTL systems).
Rule learning is explicit because subjects
intend to learn and have awareness of
what they have learned and is nondeclar-
ative because it largely recruits prefrontal
cortex and does not require the MTL for
acquisition.

� A major challenge in understanding cat-
egory learning is determining which
category-learning systems are recruited
in particular situations, and whether the
systems function independently, cooper-
atively, or antagonistically. What is ul-
timately learned is an interaction be-
tween the structure of the information
in the environment and the neural sys-
tems recruited to process the information
(Reber et al. 2003, Zeithamova et al.
2008). Which systems are recruited can
also depend on factors that can vary across
individuals and situations, such as cogni-
tive capacity (Decaro et al. 2008) and mo-
tivational state (Grimm et al. 2007).
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