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Coding of Cognitive Magnitude: Compressed
Scaling of Numerical Information
in the Primate Prefrontal Cortex

cles and two cows are both “two”). Thus, transduction
processes at the level of the sensory epithelium, which
can account for magnitude effects in sensory neurons,
cannot explain numerical magnitude effects.

So, we tested whether nonverbal numerical judg-
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ments follow the same psychophysical laws that sen-Cambridge, Massachusetts 02139
sory judgments follow. This includes the Weber law (We-
ber, 1850): the amount �I (also termed “just noticeable
difference”) that needs to be added or subtracted to/Summary
from the magnitude of a stimulus I is proportional to I,
so that the so-called Weber fraction (�I/I) is a constant.Whether cognitive representations are better con-
Fechner (Fechner, 1860) elaborated on this in his stipula-ceived as language-based, symbolic representations
tion that linear increments in sensation S are propor-or perceptually related, analog representations is a
tional to the logarithm of stimulus magnitude I, a relation-subject of debate. If cognitive processes parallel per-
ship known as Weber-Fechner law (S � k · log(I)). Thisceptual processes, then fundamental psychophysical
nonlinear scaling of stimulus magnitude has also beenlaws should hold for each. To test this, we analyzed
captured by Stevens’ power law (S � k · In), which postu-both behavioral and neuronal representations of num-
lates that sensation is a power function of the stimuluserosity in the prefrontal cortex of rhesus monkeys. The
magnitude (Stevens, 1961). These fundamental laws aredata were best described by a nonlinearly compressed
largely valid for general sensory phenomena and alsoscaling of numerical information, as postulated by the
account for many properties of sensory neurons; theWeber-Fechner law or Stevens’ law for psychophysi-
tuning of sensory neurons are often highly compressedcal/sensory magnitudes. This nonlinear compression
functions of stimulus intensity, typically with logarithmicwas observed on the neural level during the acquisition
or weak power-law dependencies (Dayan and Abbott,phase of the task and maintained through the memory
2001). Therefore, if a continuum between perceptual andphase with no further compression. These results sug-
cognitive processes exists, numerical representationsgest that certain cognitive and perceptual/sensory
should also be represented on a nonlinear, compressedrepresentations share the same fundamental mecha-
“number scale.”nisms and neural coding schemes.

However, as has already been pointed out (MacKay,
1963; Johnson et al., 2002), studying behavior aloneIntroduction
cannot tell us whether numerical judgments and other
magnitude estimations truly depend on neural represen-In many prevalent theories of cognition, the information
tations that follow these laws. The behavioral outcomecomprising lower-level sensory and higher-level cogni-
of an estimation task may simply be the result of multi-tive representations are thought to be fundamentally
ple, diverse scaling schemes at different processingdifferent. For example, some computational theories of
stages. In other words, at the behavioral level, it maymind (Fodor, 1975; Pylyshyn, 1984) suggest that virtually
look like magnitude estimations are following Weber-all cognitive representations are part of a language-
Fechner laws, but the underlying neural code could actu-based, symbolic system with combinatorial syntax and
ally look quite different. Such an argument has beensemantics (i.e., propositional). By contrast, a compet-
used in models of numerical representation, and, in fact,

ing view, the analog coding hypothesis (Shepard and
it remains controversial whether linear (Gibbon, 1977;

Metzler, 1971; Shepard and Podgorny, 1978; Kosslyn,
Gibbon and Church, 1981; Gallistel and Gelman, 2000;

1994; Barsalou, 1999), emphasizes a continuum between Brannon et al., 2001) or nonlinear (Van Oeffelen and
mental processes; it posits that higher-level cognitive Vos, 1982; Dehaene and Mehler, 1992; Dehaene and
representations are fundamentally similar to lower-level Changeux, 1993; Dehaene, 2001) coding underlies nu-
sensory representations and thus should follow the merical judgments (Figure 1).
same laws and exhibit similar attributes. Here, we examine coding schemes of numerical repre-

Numerical judgments offer an opportunity for explor- sentations in the monkey prefrontal cortex (PFC). The
ing this issue. Although this ability is considered a higher main goal was to determine if the behavioral and neural
cognitive phenomenon, numerical judgments show mag- data are consistent with psychophysical laws that pre-
nitude effects like sensory judgments; they are influenced dict compressed scaling of numerical information. We
by the numerical distance between two values (the “nu- report that both behavioral and neural measures of vi-
merical distance effect”) and their absolute magnitude sual quantities are indeed better described by a nonlin-
(the “numerical magnitude effect”) (Moyer and Lan- ear than a linear coding scheme, and they do seem
dauer, 1967; Dehaene, 1992; Dehaene et al., 1998). At to follow the Weber-Fechner law. Overall, the results
the same time, numerical judgments are clearly different suggest that nonverbal numerical judgments as one ex-
from sensory processes because they are abstract, irre- ample of higher-level cognitive phenomena are funda-
spective of exact physical appearance (e.g., two bicy- mentally similar to those underlying lower-level sensory

judgments and thus support analog coding over propo-
sitional models of cognitive representations.*Correspondence: nieder@mit.edu
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Figure 1. Comparison of the Linear-Coding
and Logarithmic-Compression Hypotheses

(A and B) Linear-coding hypothesis. (A) Inter-
nal representations consist of symmetric nor-
mal distributions on a linear scale that are
centered on each number and become pro-
gressively wider in proportion to increasing
magnitude (“scalar variability”). The ratio of
the standard deviation to the mean (i.e., the
coefficient of variation) is constant across a
range of quantities. (B) The distributions plot-
ted on a logarithmic scale become asymmet-
ric with a shallower slope toward smaller
numbers.
(C and D) Logarithmic-compression hypothe-
ses. (D) Quantities are represented on a power-
function or logarithmically compressed scale
with constant variability across different num-
bers. Underlying representations will be
Gaussian on a log scale. The accuracy of the
representations stays invariable with increas-
ing size of a quantity. Thus, the standard devi-
ation, not the coefficient of variation, is con-
stant across quantities. (C) When transformed
to a linear scale, the distributions are asym-
metric, but now with a shallower slope toward
higher numbers relative to the mean. (Ampli-
tudes of all distributions are kept constant
for simplicity.) Both models can account for
numerical magnitude and distance effects.

Results successive visual displays contained the same small
number of pseudorandomly placed items (Nieder et al.,
2002). To perform this task, monkeys needed to abstractBehavior

We trained monkeys on a delayed match-to-numerosity the quantity of items from visual displays that varied
widely in appearance and then hold that information intask (Figure 2A) that required them to judge whether

Figure 2. Behavioral Protocol and Recording
Site

(A) Delayed match-to-numerosity task. Fixat-
ing monkeys were cued for a given numero-
sity by a sample display. The subjects had to
memorize the numerosity in a 1 s delay period
and match it to a subsequent test stimulus
(either the first or the second test stimulus
was correct in 50% of the cases) by releasing
a lever. During single-unit recording, the non-
match stimuli were one numerosity up or
down. For the behavioral tests (shown here),
however, a larger range of nonmatch numero-
sities was shown. As an example, the figure
displays the protocol for sample numerosity
“five.”
(B) Area of recording sites (blue) in both mon-
keys. Mainly neurons from the ventral bank
of the prefrontal cortex were recorded.
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Figure 3. Quantification of Behavioral Performance Curves

The behavioral performance for both monkeys indicated whether they judged the first test stimulus (after the delay) as containing the same
number of items as the sample display (“% same as sample”). Colors represent performance curves for a given sample numerosity. Behavioral
filter functions are plotted on linear (A) and logarithmic (B) scales. The functions are asymmetric when plotted on a linear scale (note the
shallower slope toward higher numerosities) (A), but are symmetric when plotted on the nonlinear logarithmic scale (B). (C and D) Individual
distributions for all tested numerosities for both monkeys. Columns to the left in (C) and (D) show data plotted on a linear scale, contrasted
by the same functions plotted on a logarithmic scale. To evaluate the symmetry of the behavioral and filter functions in the monkeys, a normal
distribution (Gaussian, indicated by dotted lines) was fitted to the measured data, and the goodness-of-fit was derived as quantitative measure
(error bars, �SEM).

memory over a short delay. Performance on sets of sively better as numerical distance between two dis-
plays increased (numerical distance effect). For largercontrol stimuli confirmed that the monkeys were relying

on abstract quantity information rather than on the exact quantities, the two numerosities had to be numerically
more distant for performance to reach the level obtainedappearance of the displays or lower-level visual features

(area, circumference, density, or geometric arrangement with smaller quantities and closer numerical distance
(numerical size effect).of the dots) (Nieder et al., 2002). In a new set of behav-

ioral experiments, we tested the monkeys’ performance The distributions of both monkeys’ performance were
asymmetric when plotted on a linear scale (Figure 3A);to an expanded range of nonmatch numerosities (Fig-

ures 3A and 3B). Monkeys made more errors when the slopes were shallower for numerosities higher than the
sample numerosity (i.e., the center of each distribution)numerosities were adjacent and performed progres-
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osity judgments is better described using a power func-
tion-compressed or logarithmically compressed scale, as
opposed to a linear scale; it seems that these data follow
the Weber-Fechner law.

Neurophysiological Data
We performed similar analyses on the activity of neurons
from the lateral PFC (Figure 2B) of these monkeys ob-
tained during task performance. Data were analyzed
separately for the acquisition (sample epoch) and the
retention phase (delay epoch).

From a total sample of 352 tested cells, 131 and 111Figure 4. Quantification of Gauss Fits to the Behavioral Data
showed significant tuning to one of the five displayed(A) Goodness-of-fit of Gauss functions fitted to the performance
numerosities during sample presentation and the subse-curves plotted on different scales. The goodness-of-fit was signifi-

cantly better for the three nonlinear scaling schemes (error quent memory delay, respectively (ANOVA, p � 0.01).
bars, �SEM). Their neural activity formed numerosity filter functions
(B) The standard deviation (sigma) of the Gauss fits for nonlinear with activity declining progressively with increasing nu-
scaling plotted against the center of the Gauss function (which is

merical distance from a preferred number (i.e., that elic-identical to the numerosity of the match stimulus). Dotted lines
iting maximal activity) (Nieder et al., 2002). Populationindicate linear fits. (The values of sigma are related to the specific
mean neural filter functions were constructed by averag-compression scheme.)
ing activity across all neurons that preferred a given
number. The neuron data mirrored the numerical dis-
tance and magnitude effects by the fact that the neuralthan for numerosities lower than the sample. However,

when plotted on a logarithmic scale, the distributions filters were also an inverted V-shape that became less
selective (wider) with increasing preferred numerosity.were more symmetric (Figure 3B), suggesting that a

nonlinear coding scheme might be more appropriate for Much like the behavioral data, the neural filter func-
tions were asymmetric when plotted on a linear scale,this data. To quantify this, we first determined whether

linear or nonlinear scaling models provided a superior but more symmetric when plotted on a logarithmic scale.
Figures 5 and 6 show this data separately for the samplefit to this behavioral data. We plotted the data along

four scales: a linear scale, a power function with an and delay epochs, respectively. We applied the same
goodness-of-fit tests that were applied to the behavioralexponent of 0.5, a power function with an exponent of

0.33, and a logarithmic scale (see Experimental Proce- data. Once again, the four different scaling schemes
resulted in significantly different goodness-of-fit valuesdures). To evaluate the symmetry of the behavioral and

filter functions in the monkeys, we fitted a normal distri- (p � 0.02, Friedman test). For both the sample and delay
epochs, the (nonlinear) power function and logarithmicbution (Gaussian) to the measured data. The Gaussian

was chosen because it represents the standard sym- scales provided a better fit to the data than the linear
scale (p � 0.05, Wilcoxon signed ranks test). Goodness-metric distribution and thus provided a means to com-

pare the behavioral functions. The scales become in- of-fit for the sample and delay data are shown in Figures
5C and 6C, respectively. For the sample period, thecreasingly nonlinearly compressed along this sequence.

Gauss functions were fit to the distributions, and the mean goodness-of-fit values for the linear scale, the
power function with an exponent of 0.5, the power func-goodness-of-fit of the resulting plots to normal (Gaussian)

distribution was derived (Figures 3C and 3D). The more tion with an exponent of 0.33, and the logarithmic scale
were 0.72, 0.83, 0.86, and 0.89. For the delay period,symmetrical the distribution, the better this fit, and,

therefore, the better that scale describes the data. the average values were 0.84, 0.92, 0.93, and 0.96, re-
spectively. Also similar to the behavioral data, the vari-Goodness-of-fit values (r2) were significantly different

for the four different scaling schemes (p � 0.002, Fried- ance of neural distributions was more or less constant
with increasing preferred numerosity when the dataman test) (Figure 4A); all three nonlinear scales resulted

in significantly better fits than the linear scale (p � 0.01, were plotted on a logarithmic scale, but increased with
numerosity when the data were plotted on a linear scaleWilcoxon signed ranks test). The mean goodness-of-fit

values for the linear scale, the power function with an (Figures 5D and 6D), once again as predicted by a nonlin-
ear coding model (Van Oeffelen and Vos, 1982; Dehaeneexponent of 0.5, the power function with an exponent

of 0.33, and the logarithmic scale were 0.93, 0.97, 0.98, and Mehler, 1992; Dehaene and Changeux, 1993; De-
haene, 2001). This was true both for the sample andand 0.98, respectively. (This effect was not due to trun-

cating higher numbers on a logarithmic scale.) Further, the delay period (slope of linear fit: sample � �0.001,
delay � �0.012). Thus, there was little or no changethe variance of the distributions for each numerosity

(i.e., sigma of the Gauss fit to the performance curves) in the coding scheme between the sample and delay
epochs. The nature of the neural representation waswas constant when the data was plotted on a power

function scale with 0.33 exponent (slope of linear fit � established during the initial acquisition process and
then maintained over the delay. This will become impor-0.004) and the logarithmic scale (slope of linear fit �

�0.006) (Figure 4B), which is predicted by a nonlinear tant when discussing potential “counting” models (see
Discussion).coding model of numerosity (Van Oeffelen and Vos,

1982; Dehaene and Mehler, 1992; Dehaene and Changeux, If the behavioral and neural data are truly following the
Weber-Fechner law, then it is important to demonstrate1993; Dehaene, 2001). Thus, performance data for numer-
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Figure 5. Neural Representation of Numerosities in the PFC during Figure 6. Neural Representation of Numerosities in the PFC during
the Sample Period the Delay Period
(A) The neural filter functions are asymmetric on a linear scale (note (A) Again, the neural filter functions are asymmetric on a linear scale.
the shallower slope toward higher values for preferred numerosity (B) Logarithmic transformation of the filter functions results in more
“2,” for example). symmetric distributions.
(B) Logarithmic transformation of the filter functions results in more (C) Goodness-of-fit for the four different scaling schemes.
symmetric distributions. (D) Standard deviation values for the scaling schemes across pre-
(C) Goodness-of-fit for the four different scaling schemes. ferred quantities (error bars, �SEM).
(D) Standard deviation values for the scaling schemes across pre-
ferred quantities (error bars, �SEM).

bers). Instead, we can calculate the Weber fraction sep-
arately for numerosities smaller and larger than the sam-that the Weber fractions remain constant over different

numerosities. The traditional way to calculate the Weber ple number n (Equations 3 and 4; see Experimental
Procedures) (Van Oeffelen and Vos, 1982). According tofraction (Equation 1 in the Experimental Procedures)

assumes equal numerical distance of discrimination this formulation, the Weber fraction for the upper and
lower part of a distribution should be equal and constantthresholds for numbers smaller and larger than the sam-

ple number. As the above analyses indicate, behavioral if a logarithmic scale is the best scale. The “asymmetry
index” (Equation 5; see Experimental Procedures) addi-and neural distributions are asymmetric on a linear

scale; thus, the numerical distances between the sample tionally tests if the proportions of the lower and upper
part of the distributions obey a logarithmic relationship.number n and the threshold numbers above and below

n are unequal (i.e., longer distance toward higher num- If they do, the index value should be 1. (The linear and
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ted on a logarithmic scale and fitted with Gauss func-
tions, and the standard deviation (sigma) of each distri-
bution was estimated from this fit. We then computed
a neural-behavioral bandwidth ratio for each numerosity
by dividing the neural sigma by the behavioral sigma.
Larger sigma means a wider distribution (and therefore
less selectivity), so bandwidth ratios greater than one
indicate that the neural population was less sensitive
than behavior. This revealed that the bandwidth ratios
were a constant 1.5 across all numerosities (Figure 7D),
indicating greater sensitivity on the behavioral than the
neural level. But also note that this ratio remained re-
markably constant across different numerosities (slope �
0.02, linear fit) even though at both the behavioral and
neural level, sensitivity decreases with increasing num-
erosity. This suggests a direct relationship between be-
havioral and neuronal representations.

Discussion

Figure 7. Comparison of Behavioral and Neuronal Data In this study, we report that behavioral and neural mea-
Weber fractions and asymmetry indices for the behavioral perfor- sures of visual numerosities are better described by a
mance (A) and the neuronal data during sample presentation (B) nonlinear than a linear scale. After nonlinear compres-
and delay period (C). (D) The bandwidths between the behavioral sion using power functions or a logarithmic scale, the
and the neural filter functions changed proportionally and exhibited

psychophysical and neuronal data showed symmetrica fixed ratio of 1.5.
distributions and constant variability, at least within the
tested numerosity range. Both of these findings are pre-
dicted by a nonlinear coding model of numerosity (Vanthe log models can give comparable Weber fraction and

asymmetry index values if filter bandwidths are ex- Oeffelen and Vos, 1982; Dehaene and Mehler, 1992;
Dehaene and Changeux, 1993; Dehaene, 2001), andtremely sharp, but our measured filter bandwidths are

relatively broad). thus, these results support that model over a linear cod-
ing model.Figure 7 shows the values of the Weber fractions cal-

culated from numbers smaller than the sample numero- To evaluate the symmetry of the behavioral and neural
filter functions in the monkeys, we fitted a normal distri-sity (Ws) and from numbers larger than it (Wl), as well as

the asymmetry index for both the behavioral data and bution (Gaussian) to the measured data. The Gaussian
was chosen because it represents the standard sym-neural data. Consistent with logarithmic coding, the val-

ues for Ws (mean 0.37 � 0.03 STD) and Wl (mean 0.33 � metric distribution. As indicated by the very high good-
ness-of-fit values, which were close to the ideal value0.06 STD) for the behavioral data (Figure 7A) are equal

and constant across numerosities. Also consistent are of 1 for the best scaling schemes, the normal distribution
was well suited as a model function. Whether numericalthe asymmetry indices, which are close to 1 for all tested

numerosities (mean 0.97 � 0.04 STD). filter functions are best modeled by Gaussians or some
other related peak functions, however, is currently un-Similar results were obtained for the neural data, for

both the sample (Figure 7B) and delay period (Figure known. Functions with higher center numerosities and
more sampling points can be derived to resolve this7C). The neuronal Weber fractions Ws and Wl are equal

and constant for the numerosities 2 through 4 (fractions question. The differences in goodness-of-fit for the four
different scaling schemes were highly significant andfor preferred numerosities “one” and “five” are not in-

cluded because they are at the end of the tested range consistent across tests, but small. This is not surprising,
because large differences could not be expected. Evenand thus some values cannot be derived as the distribu-

tions are incomplete). During the sample and delay pe- a slightly skewed distribution resulting from a normal
distribution plotted on the “wrong” scale (see predic-riod, Ws had values of 0.22 (�0.09) and 0.20 (�0.08),

respectively. Similarly, Wl was 0.33 (�0.11) for the sam- tions in Figure 1) would yield a relatively good goodness-
of-fit value. But despite relatively high values, all nonlin-ple interval and 0.24 (�0.09) in the delay period. The

asymmetry indices in the sample (mean 1.10 � 0.14 ear scaling protocols produced systematically higher
goodness-of-fit values. Thus, nonlinearly compressedSTD) and delay epoch (mean 1.02 � 0.09 STD) were

also close to 1, as predicted by the logarithmic-coding scaling was significantly superior compared to linear
scaling.hypothesis. Thus, in sum, all of our analyses support

that notion of a nonlinearly compressed coding scheme Both the behavioral and neural data obeyed Weber’s
law (increasing the numerical distance between numero-for numerosity information.
sities by a given fraction improves discriminability). This
clear Weber fraction signature argues for explicit numer-Comparison of Behavioral and Neural Data

We also compared behavioral and neural selectivity for ical representations in monkeys. The data are not com-
patible with nonnumerical “object-file” representationsdifferent numerosities. The behavioral and neuronal

population distributions for each numerosity were plot- (e.g., Feigenson et al. 2002), which would show a strict
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limit of quantities that can be discriminated (“set size epoch) and that there was no further compression of
signature” of object-file representations). More gener- the data in the subsequent memory delay. This is similar
ally, these findings are consistent with the Weber- to observations from the somatosensory system where
Fechner law (equal increments in sensory experience it has been proposed that once the neural representation
are proportional to the logarithm of stimulus magnitude). of somatosensory intensity is established during acqui-
This suggests that nonverbal cognitive representations sition, information is transmitted across subsequent
(e.g., numerosity) obey the same fundamental laws and processing stages with no further compression (Werner
neural coding schemes as the purely sensory data from and Mountcastle, 1965; Johnson, 2000; Johnson et al.,
which the Weber-Fechner law was derived. The com- 2002).
pression of magnitude in the sensory domain is generally Based on these results, we suggest a simple pro-
caused by transduction processes at the sensory epi- cessing scheme. The only nonlinear stage consists of
thelium. But in the current study, we are dealing with the initial encoding of numerical information, but as a
abstract numerical categories, information that general- consequence, the maintenance of numerical information
izes across the exact physical appearance of displays (delay period) as well as the behavioral output are also
(Nieder et al., 2002). Thus, a simple transduction effect nonlinearly compressed. Encoding of numerical infor-
of receptors is unlikely to account for the observed com- mation results in distributions with some variation. This
pression. The monkeys’ behavioral precision in number finding is in contradiction to the “accumulator model”
discrimination was found to be superior by a factor of for nonverbal number estimation (Gallistel and Gelman,
1.5 compared to their neuronal filters’ selectivity. This 2000), which assumes that memory is the main source
is also reminiscent of sensory physiology, where psy- of imprecision in numerosity judgments. Our results,
chophysical thresholds are typically more sensitive than however, are in good agreement with the Dehaene and
average neuronal thresholds (Werner and Mountcastle, Changeux (1993) model, which posits that imprecision
1965; Kiang et al., 1965; DeValois et al., 1967; Talbot et with increasing numerosity arises from nonlinear com-
al., 1968). This may be explained by the “lower envelope pression during the acquisition of numerical information.
principle,” which argues that behavioral detection is In sum, our data provide evidence that some cognitive
supported by the most sensitive individual neurons of representations exhibit attributes similar to those found
a population (Parker and Newsome, 1998). for perceptual/sensory processes, which supports the

As a behavioral consequence of these findings, a hu- analog coding hypothesis. Studies of mental imagery
man or animal subject should be able to discriminate also strongly support the idea of analog coding of cogni-
smaller quantities more reliably than higher quantities. tive information (Shepard and Metzler, 1971; Shepard
To reach equal discriminability for numerosities smaller and Podgorny, 1978; Kosslyn 1994). Other support
and larger than the sample numerosity, the numerical comes from neuroimaging studies showing that mental
distance between sample and test must be larger if the representations activate the same neural infrastructure
test numerosity is higher than the sample. This effect used in perception (Kosslyn et al., 1995, 2001). Thus,
should become even more obvious for larger magni- perception and cognition may not reflect independent
tudes. Any theoretical approach that attempts to model systems in the brain, after all (Barsalou, 1999). From
nonverbal numerical representations in a behavioral/ an evolutionary point of view, it might have been more
physiological way will have to take a nonlinearly com- economical to build on existing principles of lower-level
pressed scaling into account (Dehaene and Changeux, sensory information to develop representations of infor-
1993). mation that we think of as “cognitive.”

What might be the advantage of a compressed numer-
ical representation? In psychophysics and sensory Experimental Procedures
physiology, the idea is that compression enlarges the

Behavioral Protocolcoding space, thus increasing the dynamic range of
Monkeys grasped a lever and fixated a central fixation target toperception and firing neurons (Dayan and Abbott, 2001).
start a trial. A sample display (800 ms) was followed by a memoryThe same could be true for the higher-level representa-
delay (1000 ms). Next, a test display appeared, which was either ations that mediate numerical abilities. Because we ex- match (it contained the same number of dots as the sample display)

plored representations in an animal without language, or a nonmatch (it contained—with equal probability—more or fewer
our data can only provide evidence for nonverbal repre- items). The lowest sample numerosity was “two,” the highest “six.”
sentations. But nonverbal numerical abilities are present For a given sample stimulus, the number of items in nonmatch displays

ranged from 1 to sample-numerosity � (sample-numerosity � 1). Ifin humans, both during ontogenesis (e.g., Spelke 2000)
the display was a match, monkeys released the lever to receive aas well as in human adults when they are prevented
juice reward before it disappeared. If the display was a nonmatch,from counting verbally (e.g., Cordes et al., 2001). Further,
the monkeys held the lever through a second, brief delay until a

adult humans, when required to indicate the larger of match appeared that required a lever release for a reward. Trials
two Arabic numbers, show a numerical distance effect were randomized and balanced across all relevant features. Mon-
similar to that seen in animals (Moyer and Landauer keys were required to keep their gaze within 1.25 degree of the
1967). Thus, even symbolic verbal representations share fixation point during sample presentation and the memory delay

(monitored with an infrared eye tracking system, ISCAN).characteristics with the nonverbal representations in-
vestigated here. Whether verbal-based representations

Stimulialso follow Weber-Fechner laws will require further
Black items (diameter range: 0.8�–1.3� of visual angle) were dis-

testing. played on a gray background (diameter: 8� of visual angle). The
Comparisons of activity between the sample and de- exact physical appearance of the displays was varied by randomly

lay epochs revealed that nonlinear coding was evident placing dots in 24 possible locations on a 5 	 5 matrix centered
around the fixation target on which monkeys maintained gaze. Eachduring the acquisition phase of the task (the sample
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dot was also randomly varied between five different sizes. To pre- As the Weber fraction is a constant, the following relation must hold:
vent the monkeys from memorizing the visual patterns of the dis-
plays, each quantity was tested with 100 different images per ses- (n � ns)

ns

�
(nl � n)

n
, (4)

sion, and the sample and test displays that appeared on each trial
were never identical. All quantities of items were used in each ses-

Because of the asymmetric relation of the discrimination functions,
sion, and all displays were newly generated for each session by

the following special relation arises, which will be called ‘asymmetry
pseudorandomly shuffling all relevant item features. Several control

index’:
stimuli were applied prior to these experiments to ensure that the
monkeys solved the task by truly abstracting quantity, rather than ns

n
·

nl

n
� 1 (5)attending to low-level visual features. Controls included displays in

which the total area and circumference was equated across different
These predictions for asymmetric representation of numerical infor-quantities, displays of low and high dot density, displays in which
mation are tested in the current paper. Note that the absolute valuestwo or more dots formed lines (“linear”) and formed polygons
of the Weber thresholds are not directly comparable for the neuronal(“shapes”), and displays in which the dots were replaced with trian-
and behavioral condition fractions because they were derived forgles, squares, and ovals (“variable features”). The behavioral perfor-
neuronal data at 75% of the maximum response due to incompletelymance of the monkeys to these controls suggested that monkeys
closed distributions at the 50% level.were indeed judging quantity (Nieder et al., 2002).
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