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SUMMARY

Functional connectivity between the prefrontal cor-
tex (PFC) and striatum (STR) is thought critical for
cognition and has been linked to conditions like
autismandschizophrenia.We recorded frommultiple
electrodes in PFC and STR while monkeys acquired
new categories. Category learningwas accompanied
by an increase in beta band synchronization of
LFPs between, but not within, the PFC and STR.
After learning, different pairs of PFC-STR electrodes
showed stronger synchrony for one or the other
category, suggesting category-specific functional
circuits. This category-specific synchrony was also
seen between PFC spikes and STR LFPs, but not
the reverse, reflecting the direct monosynaptic con-
nections from the PFC to STR. However, causal con-
nectivity analyses suggested that the polysynaptic
connections from STR to the PFC exerted a stronger
overall influence. This supports models positing that
the basal ganglia ‘‘train’’ the PFC. Category learning
may depend on the formation of functional circuits
between the PFC and STR.

INTRODUCTION

Anatomical loops between the prefrontal cortex (PFC) and basal

ganglia (BG) suggest a close functional relationship, but the na-

ture of their interactions is not yet understood. It is clear that both

areas are critical for learning. One hypothesis is that they have

different types of plasticity: The BG (in particular the striatum

or STR) are thought to rapidly acquire simple information (single

associations, decision alternatives, etc.) in piecemeal fashion,

while the PFC knits together such details into more elaborate

and generalized representations (Daw et al., 2005). Interactions

between these mechanisms may explain category learning

(Seger and Miller, 2010). The idea is that the STR rapidly forms

associations that are then fed through the BG to the PFC (Ashby

et al., 2007; Djurfeldt et al., 2001). Iterations allow more gradual

changes in synaptic weights in the PFC to detect and store the

common features across patterns learned by the BG, thereby
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acquiring the categories (Miller and Buschman, 2008; Seger

and Miller, 2010).

Support for this comes from human imaging studies showing

that both the PFC and STR are engaged during category learning

(Reber et al., 1998; Seger et al., 2000; Vogels et al., 2002). Also,

computational and neurophysiological studies suggest more

rapid changes in the STR than PFC during learning, as if the

BG was ‘‘training’’ the cortex (Djurfeldt et al., 2001; Pasupathy

and Miller, 2005). We recently provided more direct support in

monkeys trained to learn new categories (Antzoulatos andMiller,

2011). There was the predicted reversal: Early in learning, when

the associations of a few stimuli could be formed, the STR led; its

activity was the earliest predictor of the behavioral choice. But

then, as the animals began to truly acquire categories, the PFC

became the earliest predictor of the choice.

While such results are certainly suggestive of PFC-BG func-

tional interactions, direct evidence for functional interactions

between the PFC and STR is rare. It is possible that these struc-

tures are part of different learning systems that work relatively

independently. We sought to test for functional connectivity be-

tween the PFC and STR by examining synchrony between oscil-

lations of their local field potentials (LFPs) (Friston et al., 2013).

Frequency-dependent synchrony between LFPs suggests neu-

ral communication and has been observed in perceptual (Hipp

et al., 2011), motor (Brovelli et al., 2004), and cognitive tasks

(Daitch et al., 2013). The functional connectivity between BG

and PFC is of particular interest, as the network between them

has been implicated in several neurological and psychiatric con-

ditions, such as autism and schizophrenia (Padmanabhan et al.,

2013; Uhlhaas and Singer, 2012; Yoon et al., 2013). We found

evidence that functional connectivity between the PFC and

STR increased as animals acquired new categories.

RESULTS

Learning-Related Enhancement of Synchrony between
the PFC and STR
The animals were required to respond to a randomly chosen

category exemplar with a saccade to the left or right target

(Figure 1A). All exemplars were created de novo each day

through distortion of a new pair of prototypes (Figure 1B). Each

training session began with a single new exemplar per category,

which monkeys learned as specific stimulus-response (SR)
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Figure 1. Task Design

(A) The schematic illustrates the time course of a single trial. The animal had to respond to a randomly presented exemplar by choosing between a saccade to the

right or left targets (green squares).

(B) Two example categories. New pairs of prototypes (top) were constructed for each recording session. Distortion of each prototype gave rise to hundreds of

unique exemplars (only two of which are shown for each category).

(C) Average behavioral performance (% correct) ±SEM across recording sessions. The animals started by learning a few individual SR associations (SR Learning

stage: always the first two blocks). As they progressed through the blocks, they were trained on more and more exemplars (Category Learning stage) until they

eventually learned the categories and their behavior stabilized (Category Performance stage). The Category Learning and Category Performance stages are

shown for illustration only: the timing of each could vary across recording sessions, based on the animals’ performance on each new set of categories. (Adapted

from Antzoulatos and Miller, 2011.)
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associations (Antzoulatos and Miller, 2011). Then, as learning

progressed, more and more exemplars were added. This

required animals to learn the categories (or fail), because sooner

or later, they would be confronted with too many new exemplars

to sustain performance by SR learning alone.

Based on the monkeys’ performance, we could distinguish

three stages of learning (Antzoulatos and Miller, 2011) (Fig-

ure 1C). In stage 1 (SR Learning), monkeys learned the category

of (i.e., the correct saccade for) each new exemplar individually.

In stage 2 (Category Learning), the monkeys were challenged

with many more exemplars but began to perform above

chance with new exemplars. This indicates the start of acquisi-

tion of category information. In stage 3 (Category Performance),

learning of the categories was complete. Behavior remained at

asymptote even thoughmonkeys weremainly seeing new exem-

plars for the first time on most trials. We examined changes in

synchrony between the PFC and STR as a function of learning

stage.

We first calculated synchrony of LFPs between recording sites

in the PFC and STR (n = 426 electrode pairs). Each site’s LFP

signal was decomposed to its frequency components using

wavelet analysis (Torrence and Compo, 1998) and then a

phase-locking value (PLV) was determined for each pair of simul-

taneously recorded LFPs (Lachaux et al., 1999). We subtracted

out any phase-locking due to external events (e.g., stimulus

onset) so that we could isolate true neural synchrony (i.e., the

PLV values shown are the difference between observed PLV

and surrogate-data PLV) (see Supplemental Experimental Pro-

cedures available online). Analysis was focused on two critical

task epochs, the last 500 ms of the 600-ms-long exemplar pre-
sentation (exemplar epoch) and the last 500 ms preceding the

behavioral response (decision epoch). Similar results were ob-

tained from other trial epochs and using diverse measures of

synchrony (i.e., coherence and pairwise phase consistency).

We first limited this analysis to correctly performed trials; error

trials will be considered further below.

This analysis revealed a peak of PFC-STR synchrony in the

beta band (defined as 12–30 Hz) during the exemplar and deci-

sion epochs (peak at �20 Hz) (see Figure 2A). After the switch

from SR Learning to Category Learning (Stage 1 to 2), there

was a significant increase in decision-epoch average beta

band PLV between the PFC and STR (Figure 2A, right) (ANOVA,

F(2,1277) = 11.23, p = 1.5 3 10�5; post hoc comparison: SR

Learning PLV less than Category Learning and Category Perfor-

mance PLV, p = 0.0005). Correspondingly, during the decision

epoch, there was a learning-related increase in the percentage

of pairs of PFC-STR recording sites that showed significant

beta band PLV (greater than the 95th percentile of the PLV ex-

pected by chance): more pairs showed significant PLV during

Category Learning (57.3%, Stage 2) and Category Performance

(55.9%, Stage 3) than during SR Learning (42.3%, Stage 1; p =

0.003, chi-square test). Learning-related changes in PFC-STR

synchrony were limited to the decision epoch. The PFC-STR

beta PLV during the exemplar epoch did not significantly in-

crease across learning stages (Figure 2A, left) (ANOVA across

stages: F(2,1277) = 1.06, p = 0.35). Likewise, the number of pairs

of PFC-STR recording sites with significant PLVwas not different

across learning stages for the exemplar epoch (SR Learning:

48.6%; Category Learning: 55.9%; Category Performance:

50.5%; p = 0.31, chi-square test). There were also no significant
Neuron 83, 216–225, July 2, 2014 ª2014 Elsevier Inc. 217
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Figure 2. Frequency-SpecificOscillations in

PFC and STR during Two Trial Epochs

(Exemplar and Decision) Across the Three

Stages of Learning

(A) Average PLV ±SEM as a function of frequency:

peak synchrony between PFC and STR beta band

oscillations (in this and all figures, shaded rect-

angle indicates the 12–30 Hz beta band) and

learning-induced enhancement of this synchrony

during the decision epoch (see also Figures S1 and

S2; Table S1).

(B) Average spectral power (±SEM) in PFC (top)

and STR (bottom) is high at the beta band, but

does not change across learning stages.
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learning-related changes in PLV for baseline activity (middle

500 ms time segment from the 3-s-long intertrial interval;

ANOVA: F(2,1277) = 1.04, p = 0.35) (Figure S2A). The phase rela-

tionship between PFC and STR remained stable at 0� phase lag

across all trial epochs and learning stages (Figure S2B).

No Changes in Oscillatory Power within the PFC or STR
The learning-related increase in PFC-STR synchrony was inde-

pendent of changes in oscillatory power (i.e., the synchrony

changes were not a by-product of increased oscillations

per se). Note that the synchrony measure we employed (PLV)

is computed only from the phase of the wave, independently

from its amplitude (and thus oscillatory power). However, we

also computed the frequency-dependent power of PFC and

STR LFPs. To correct for the LFP’s power-law decay, power

was normalized to 1/frequency.

Both PFC (n = 84 electrodes) and STR (n = 65 electrodes) LFPs

displayed a peak in beta (STR LFPs also displayed strong power

in the 2–4 Hz delta band) (Figure 2B). Beta power was stronger in

the PFC than STR, with a peak at a somewhat higher frequency

(peak at 16 Hz versus 13 Hz, respectively) (Figure 2B). However,

there was no change in beta oscillatory power across learning

stages in either area for either the exemplar or decision epoch

(Figure 2B, ANOVA in PFC: exemplar epoch F(2,251) = 0.004,

p = 0.99, decision epoch F(2,251) = 0.001, p = 0.99; STR:
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exemplar epoch F(2,194) = 0.49, p =

0.62, decision epoch F(2,194) = 0.18,

p = 0.82). This suggests that the

learning-related changes in synchrony

between the PFC and STR reflected

changes in functional connectivity per se

rather than just a general change in oscil-

latory dynamics. Indeed, as we will see

next, learning-related changes in syn-

chrony only occurred between the PFC

and STR; there was no learning-related

change in synchrony within either area.

NoChanges in Synchronywithin the
PFC or STR
The learning-related increase in beta

synchrony was limited to interactions be-

tween the PFC and STR; there was no
learning-related change in beta (or any other frequency band)

synchrony within either area. We performed the same analyses

as above on pairs of recording sites within each area (Figures

3A and S2A). Synchrony between recording sites within the

PFC (n = 240 electrode pairs) or STR (n = 141 electrode pairs)

were overall greater than those between PFC and STR (within-

STR average PLV was also greater than within-PFC average

PLV) with a peak in the beta band (at �20Hz). However, beta

band PLV values within the PFC and STR did not change across

learning stages in either the exemplar epoch (ANOVA across

stages in beta-specific PLV within PFC: F(2,719) = 0.05, p =

0.95; within STR: F(2,422) = 0.23, p = 0.79) (Figure 3A, left) or

the decision epoch (within PFC: F(2,719) = 0.06, p = 0.94; within

STR: F(2,422) = 0.42, p = 0.66) (Figure 3A, right). Decision-epoch

PLV within the PFC and within the STR was similar during

SR Learning, Category Learning, and Category Performance

(only 0.5%–2.12% difference across learning within PFC and

2.2%–4.4% within STR). Compare this to learning-related in-

creases in beta band PLV of around 30% between the PFC

and STR (Figure 3B, right).

Decrease in PFC-STR Synchrony during Error Trials
To determine whether the PFC-STR synchrony was related to

task performance, we examined PLV from trials in which the

monkeys made the incorrect behavioral choice at the end of



Exemplar Decision

P
F

C
-P

F
C

 P
LV

0

0.05

0.1

0.15

0.2

2 4 8 16 32 64 2 4 8 16 32 64

S
T

R
-S

T
R

 P
LV

ycneuqerfycneuqerf

0

0.1

0.2

0.3

0.4

2 4 8 16 32 642 4 8 16 32 64

SR Learning

Category Learning

Category Performance

−10

0

10

20

30

40

%
 c

h
a

n
g

e
 o

f 
b

e
ta

 b
a

n
d

 

PFC-PFC STR-STR

PFC-STR

PFC-PFC
STR-STR

PFC-STR

**

A

B

Figure 3. Synchrony between Intrinsic Pairs

of Electrodes in PFC and STR

(A) Average PLV (±SEM): although intrinsic con-

nectivity peaked at the beta band both in PFC (top)

and in STR (bottom), it did not changewith learning

(see also Figure S2).

(B) The percent increase of synchrony between

PFC and STR after the SR Learning stage during

the decision epoch (right) was significantly greater

than the corresponding change in synchrony of

intrinsic PFC pairs (PFC-PFC) and STR pairs (STR-

STR) of electrodes. Error bars indicate SEM.

Neuron

Synchronized Rhythms between PFC and Striatum
the trial. This analysis was necessarily focused only on the SR

Learning and Category Learning stages because the animals’

asymptotic performance during Category Performance did not

include sufficient error trials for their analysis.

While there was strong beta band synchrony during error trials

(Figure 4A), there was no learning-related increase in beta syn-

chrony (PLV), unlike what was seen for correct trials (see above).

On the contrary, there was a significant decrease of PFC-STR

beta band PLV from SR Learning to Category Learning during

the exemplar epoch (Figure 4A, left; ANOVA across stages:

F(1,810) = 28.83, p = 10�7). Synchrony did not change signifi-

cantly across the two stages in the decision epoch (F(1,810) =

3.48, p = 0.06; Figure 4A, right).

In order to compare synchrony between correct and error tri-

als, we employed the discrimination index d0, which quantifies

the difference between the mean of two sets of trials (i.e., error

and correct trials), normalized to their pooled SD (Dayan and

Abbott, 2001). This quantity was transformed into a z score,

based on 200 random shuffles of the trials between the correct

and error groups. The average z-transformed d0 indicated a

significant decline in error-correct synchrony for the beta
Neuron 83, 216
band from SR Learning to Category

Learning (15–20 Hz; ANOVA on exemplar

epoch d0 between SR Learning and

Category Learning: F(1,810) = 54.11,

p = 4.7 3 10�13; during decision epoch:

F(1,810) = 60.97, p = 1.8 3 10�14). Fig-

ure 4B plots the z scores for correct

trials subtracted from error trials (i.e.,

the average z-transformed d0). During

the exemplar epoch (Figure 4B, left),

note that the scores were significantly

above zero in beta for SR Learning (t

test for d0 relative to zero discrimination:

p = 1.7 3 10�8), indicating greater syn-

chrony on error trials and significantly

below zero for Category Learning (p =

2.8 3 10�5), indicating greater beta syn-

chrony on correct trials. For the decision

epoch (Figure 4B, right), error-correct

values were significantly greater than

zero for SR Learning, indicating greater

beta synchrony on error trials (t test,

p = 3 3 10�21). However, during Cate-
gory Learning, there was no difference in beta synchrony be-

tween correct and error trials (i.e., error-correct PLV values

did not differ from zero [p = 0.81]). Therefore, we see that the

shift from SR Learning to Category Learning led to changes in

PFC-STR synchrony that depended on trial epoch and task per-

formance. In the exemplar epoch, there was a significant

decline of PLV during error trials (Figure 4A, left) but no change

in correct trials (Figure 2A, left). In the decision epoch, there was

a significant increase of PLV during correct trials (Figure 2A,

right) but no change in error trials (Figure 4A, right). Note that

the net effect is similar: for both exemplar and decision epochs,

the transition from SR Learning to Category Learning preferen-

tially favored the PFC-STR synchrony during correct, relative to

erroneous, categorization.

Emergence of Category-Specific Patterns of Synchrony
between the PFC and STR with Learning
A recent study of PFC LFPs reported rule-specific patterns

of beta band synchrony between different recording sites, sug-

gesting that beta synchrony can help form network ensembles

for rules (Buschman et al., 2012). We examined whether
–225, July 2, 2014 ª2014 Elsevier Inc. 219



A

B

Figure 4. Analyses of PFC-STR Synchrony

in Error Trials of SR Learning and Category

Learning Stages

(A) Average (±SEM) PLV in error trials: in contrast

to the increase of beta band synchrony observed

in correct trials (Figure 2), synchrony between PFC

and STR did not increase across learning stages;

rather, it decreased significantly, at least during

the exemplar epoch.

(B) The average (±SEM) z-transformed difference

(d0) between error- and correct-trial PLV. During

both trial epochs, error trials displayed stronger

PFC-STR synchrony than did correct trials in

the SR Learning stage, but, in the Category

Learning stage, this difference was either elimi-

nated (decision epoch) or reversed (exemplar

epoch).

Neuron

Synchronized Rhythms between PFC and Striatum
category-specific rhythmic networks formed in the process of

category learning.

For each pair of electrodes, we computed differences in syn-

chrony (PLV) for exemplars from the two categories using the

discrimination index d0 (described above), as in our previous

study of neural activity (Antzoulatos and Miller, 2011). To correct

biases of the d0 metric due to variable and unequal numbers of

trials, and to evaluate its statistical significance, trials were

randomly shuffled 200 times between the two categories, thus

generating a randomization distribution for the d0 quantity, which

was then used to z transform each electrode pair’s d0. In short,

we used this measure to determine whether different electrode

pairs showed different levels of synchrony for the two different

categories (i.e., category selectivity).

Significant category-selective synchrony was observed, but

only after the animals had learned the categories. During Cate-

gory Performance, there was a significant increase of exemplar

epoch category-selective synchrony in the beta band (peak at

�19 Hz) between the PFC and STR (Figure 5A, left) (ANOVA

on category selectivity across learning stages, F(2,1277) =

21.88, p = 4.5 3 10�10; post hoc comparisons: selectivity dur-

ing Category Performance greater than during SR Learning and

Category Learning, p = 5 310�7). During the decision epoch,

there was a significant increase of delta band category selec-

tivity (peak at �3 Hz, Figure 5A, right) (F(2,1277) = 39.37, p =

2.6 3 10�17; post hoc comparisons: selectivity during Category

Performance greater than during SR Learning and Category

Learning: p = 10�11). Correspondingly, category-selective

PFC-STR synchrony was not different from that expected by

chance during the SR Learning or Category Learning stages

but was significantly different from chance during Category

Performance (t test for selectivity greater than zero in beta

band of exemplar epoch: SR Learning, p = 0.99; Category

Learning, p = 0.99; Category Performance, p = 7.2 3 10�8; in
220 Neuron 83, 216–225, July 2, 2014 ª2014 Elsevier Inc.
delta band of decision epoch: SR

Learning, p = 0.99; Category Learning,

p = 0.99; Category Performance, p =

5.7 3 10�16).

As was seen for the learning-related

general increase in beta synchrony, sig-
nificant category-selective synchrony was only seen between

the PFC and STR. There was no significant category-selective

synchrony within the PFC or STR (t test for selectivity greater

than zero: SR Learning stage: exemplar epoch, within PFC p =

0.99, within STR p = 0.99, decision epoch, PFC p = 0.14, STR

p = 0.99; Category Learning stage: exemplar PFC p = 0.99,

STR p = 0.06, decision PFC p = 0.99, STR p = 0.08; Category

Performance stage: exemplar PFC p = 0.99, STR p = 0.99, deci-

sion PFC p = 0.27, STR p = 0.92). Thus, it seems that acquisition

of the categories is accompanied by development of category-

specific patterns of synchrony between, but not within, the

PFC and STR.

Significant category-selective beta synchrony (at �14 Hz)

during Category Performance was also seen between spikes

and LFPs during the exemplar epoch, specifically between

PFC multiunit spiking activity (MUA) and STR LFPs (Figure 5B;

ANOVA across stages: F(2,1239) = 19.71, p = 3.8 3 10�9;

post hoc comparisons: selectivity during Category Performance

stage greater than during SR Learning and Category Learning

stages, p = 5 3 10�6). This spike-LFP synchrony was signifi-

cantly greater than that expected by chance during Category

Performance (t test: p = 5.3 3 10�8) but not during SR Learning

(p = 0.49) or Category Learning (p = 0.90). Importantly, spike-

LFP category-selective synchrony was asymmetric. It was

seen between PFC spikes and STR LFPs (above) but not be-

tween STR spikes and PFC LFPs at any of the learning stages

(Figures 5B and S3A, t test: SR Learning, p = 0.82; Category

Learning, p = 0.96; Category Performance, p = 0.59). As

was seen for LFP-LFP synchrony, there was no evidence for

category-specific spike-LFP synchrony within PFC or STR

(Figure S3B; SR Learning stage: PFC p = 0.96, STR p = 0.99;

Category Learning stage: PFC p = 0.52, STR p = 0.86; Category

Performance stage: PFC p = 0.11, STR p = 0.23). Thus, it

seemed that patterns of category-selective synchrony were
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Figure 5. Category Selectivity in the

Strength of PFC-STR Synchrony

(A) Synchrony between PFC and STR LFPs

(average z-transformed d0 ±SEM) displayed sig-

nificant category selectivity during the Category

Performance stage. Category-specific synchrony

was observed at the beta band during the exem-

plar epoch and at the delta band during the deci-

sion epoch.

(B) Similar to the LFP-LFP synchrony above, MUA-

LFP synchrony (average z-transformed d0 ±SEM)

between PFC-STR (spikes in PFC, LFP in STR; top)

also displayed significant category selectivity at

the beta band of the exemplar epoch; again, this

was evident for the first time during the Category

Performance stage. In contrast, the reverse di-

rection (spikes in STR and LFP in PFC; bottom)

did not show any category selectivity (see also

Figure S3).
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from the PFC to the STR, not the other way around and not

within either area.

In our task, each category was uniquely associated with a

saccade to the left or the right. Most cortical areas show activity

that is biased toward processing of, and actions to, the contra-

lateral hemifield. We therefore sought to determine whether

the category-selective synchrony was primarily associated

with categories signaling contralateral saccades. While LFP-

LFP synchrony was seen for categories associated with both

contralateral and ipsilateral saccades, there was a significant

bias toward contralateral saccades for delta band category-se-

lective synchrony during the decision epoch, when the monkeys

prepared to execute the saccade (63.9% of all electrode pairs

preferred contralateral saccades; p = 0.0001, chi-square test).

By contrast, there was no contralateral or ipsilateral bias for

beta band category-selective synchrony during the exemplar

epoch (53.5% of all pairs preferred contralateral saccades;

p = 0.16). Category-specific beta band spike-LFP synchrony

between PFC-STR was also not biased for ipsilateral versus

contralateral saccades (50.8% of all pairs preferred contralateral

saccades: p = 0.81).
Neuron 83, 216
STR Exerts Larger Causal Influence
on PFC than the Reverse
The measure of synchrony utilized above

(PLV) is a measure of functional, not

causal, connectivity, because it provides

no information on the causal influence of

one area on the other. Granger’s test of

causal connectivity can be used to indi-

cate the degree of influence each area

has on another. It evaluates how much

of one area’s LFP variance can be ex-

plained by the other area’s LFP variance.

Furthermore, this analysis can be per-

formed at the frequency domain to iden-

tify causal influence specific to brain

rhythms (Friston et al., 2013). Because

Granger causality can also be affected
by areas that provide common input to PFC and STR and/or

intervene between the two (e.g., the rest of BG), it is also a

more global measure of influence than the spike-LFP synchrony

we showed above (which is more sensitive to direct neurophys-

iological connections between the two areas).

We analyzed the causality between PFC and STR LFPs with a

nonparametric variant of the Granger causality test so the results

would not hinge on the order of the multivariate autoregressive

model that a parametric test would require (Dhamala et al.,

2008; Roberts et al., 2013). This analysis revealed that, although

both areas had causal influence on each other, STR exerted

a significantly stronger causal influence on PFC than PFC on

STR (i.e., STR LFPs were better predictors of PFC LFPs rather

than the reverse), and this was evident across the largest part

of the frequency spectrum (Figure 6A) (e.g., 20 Hz beta band at

SR Learning stage, exemplar epoch: t test on magnitude of

Granger causality between the two directions: p = 10�45; deci-

sion epoch: p = 10�41). Indeed, most of the PFC-STR electrode

pairs showed a stronger influence from STR to the PFC than

the other way around (exemplar epoch: 80.8% of all pairs: p =

0.0001, chi-square test; decision epoch: 77.2%; p = 0.0001). In
–225, July 2, 2014 ª2014 Elsevier Inc. 221
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Figure 6. Analyses of Granger Causal Con-

nectivity between PFC and STR

(A) Average Granger connectivity index ±SEM: the

two directions of causal connectivity during the

two trial epochs of the SR Learning stage. Striatum

exerts stronger influence on the prefrontal LFPs

(STR / PFC) than the other way around (PFC /

STR). This difference is seen across the frequency

spectrum, but especially at the beta band (shaded

rectangle).

(B) Average (±SEM) relative causality (STR/ PFC

direction normalized to the PFC / STR direction)

across learning stages. In contrast to the robust

enhancement of functional connectivity at the beta

band (20 Hz) with learning (Figure 2), causal con-

nectivity did not increase significantly, suggesting

that the relative influence of one area on the other

did not change.
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addition to their difference in magnitude of causal connectivity,

the two areas also differed in the spectral profile of their causal

influence on one another: PFC had the strongest influence on

the low frequencies of STR LFPs (e.g., delta band), whereas

STR displayed clear peak influence on both the delta and beta

bands of the prefrontal LFPs (Figure 6A).

In order to evaluate learning-induced changes in the relative

causal connectivity between PFC and STR, we computed a

composite causality index from both directions (PFC / STR

and STR / PFC) for each learning stage and trial epoch:

(A�B)/(A+B), wherein A is STR / PFC causality and B is

PFC / STR causality. There was little change in the direction

of influence between the PFC and STR (Figure 6B) and no signif-

icant change in the 20 Hz beta band that displayed the afore-

mentioned synchrony changes (ANOVA on causality of exemplar

epoch across stages of learning: F(2,1277) = 2.49, p = 0.08;

decision epoch: F(2,1277) = 1.37, p = 0.25). This suggests that

the relative weight of one area’s influence on the other did not

change as a result of learning. Thus, while the analysis on cate-

gory-selective spike-LFP synchrony (above) suggested a one-

way PFC-STR synchrony, consistent with the monosynaptic

connections from the PFC to STR, it appears that the polysyn-

aptic connections from the STR back to the PFC had a greater

influence on the PFC oscillations.

DISCUSSION

We found that category learning was accompanied by increased

synchronization between, but not within, the PFC and striatum.

Synchrony is thought to play a role in establishing functional

circuitry (Engel et al., 2001; Fries, 2005; Miller and Buschman,

2013; Uhlhaas et al., 2009). Supporting this, we found that

once the categories were learned, different pairs of PFC-STR
222 Neuron 83, 216–225, July 2, 2014 ª2014 Elsevier Inc.
recording sites showed increased syn-

chrony for one or the other category, sug-

gesting functional circuits for mapping

category representations in the PFC

to the appropriate motor program in the

BG. Spike-LFP synchrony did suggest
that the category-specific synchrony was, in fact, asymmetric

between the PFC and STR, reflecting the asymmetric monosyn-

aptic projections between them. However, causal connectivity

analysis suggested that the polysynaptic projections from the

STR back to the PFC exerted a greater influence. This is consis-

tent with models positing that the STR (through the BG) continu-

ally ‘‘trains’’ the PFC (Antzoulatos and Miller, 2011; Ashby et al.,

2007; Djurfeldt et al., 2001; Houk and Wise, 1995; Miller and

Buschman, 2008; Pasupathy and Miller, 2005; Seger and Miller,

2010).

The learning-related increases in PFC-STR synchrony seemed

functional. First, they were not simply due to an overall increase

in oscillatory power. Second, they were only seen during the trial

and not in baseline activity. Third, they were specific to syn-

chrony between the areas; there were no synchrony changes

within PFC or STR. Finally, error trials (incorrect choices) did

not display the same increase in beta synchrony that correct

trials did. Curiously, error trials during SR Learning displayed

stronger PFC-STR beta synchrony than did correct trials. This

reversed once the animals advanced to Category Learning. SR

learning is well known to rely on the BG (Packard and Knowlton,

2002), and striatal neurons display rapid acquisition of SR asso-

ciations (Antzoulatos and Miller, 2011; Pasupathy and Miller,

2005). It is possible that stronger error trial beta synchrony

between the STR and PFC interfered with the ability of STR to

map the stimulus to the correct motor response during SR

Learning. Indeed, excessive synchrony of cortex-BG networks

is seen during Parkinsonian motor symptoms (Hammond et al.,

2007; Marreiros et al., 2012).

Learning-related effects in the beta band are consistent with

prior observations that beta band (12–30 Hz) oscillations are

prominent in frontal cortex (Puig and Miller, 2012; Siegel et al.,

2009) while gamma band oscillations predominate in posterior
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cortex (Fries, 2009), that cortical beta versus gamma are associ-

ated with top-down (feedback) versus bottom-up (feedforward)

processing (Buschman and Miller, 2007; Engel and Fries,

2010), and beta band oscillations synchronize striatal neurons

in monkeys performing oculomotor tasks (Courtemanche et al.,

2003). It should be noted that ‘‘beta band’’ may include more

than one type of oscillation with distinct neurophysiological

mechanisms and functions (Cannon et al., 2013). Indeed, the

different results from this study showed peaks at different fre-

quencies within the beta band. A dissection of the contributions

of different beta sub-bands was beyond the scope of our study.

The learning-related changes in PFC-STR synchrony parallel

the changes in category learning-related changes in single-

neuron activity previously seen in this data set (Antzoulatos

and Miller, 2011). During SR Learning, STR spiking activity was

an earlier predictor of the corresponding saccade than the

PFC. However, when monkeys advanced to Category Learning,

PFC neurons began predicting the saccade associated with

each category before the STR. One result of this was that PFC

and STR neurons showed more overlap of their task-related

spiking activity during and after Category Learning, relative to

SR Learning. This overlap was in the decision epoch, just before

the behavioral response. This is when we also first observed the

learning-related increase in PFC-STR beta synchrony.

Category-selective beta synchrony could serve to communi-

cate the categorical decision from the PFC to the STR. It

occurred well before the motor response, during exemplar pre-

sentation, and did not show a contralateral motor bias. By

contrast, category-specific delta synchrony occurred when the

monkeys were about to make their motor response, and it was

contralaterally biased. This could reflect recruitment of PFC

and striatum in a larger network for motor acts. Low frequency

oscillations (like delta and theta) have been associated with

long-range synchronization among spatially diverse systems in

the context of decisionmaking, attention, andmemory (Haegens

et al., 2011; Schroeder and Lakatos, 2009; Watrous et al.,

2013). Delta band synchronization (at least in visual cortex) is

also observed during eye movements (Bosman et al., 2009; Ito

et al., 2013). It should be noted that an emergence of category

selectivity in the absence of a change in general synchrony sug-

gests that synchrony during the preferred category increases,

while synchrony during the nonpreferred category decreases,

thus offsetting each other when synchrony across all trials is

computed.

Dopamine may play a role in learning-related changes in

synchrony. It mediates plasticity of excitatory corticostriatal

connections. Because the phasic dopamine release that

signals reward-prediction errors induces long-term potentiation

of active cortical synapses ontomedium spiny striatal neurons of

the direct pathway (Gerfen and Surmeier, 2011; Lerner and

Kreitzer, 2011)—i.e., the pathway that closes the PFC-BG-thal-

amus-PFC loop—it may also be responsible for increasing the

synchronization between PFC and STR. Although dopamine is

also known to affect the activity of prefrontal neurons during

SR learning (Puig andMiller, 2012) andworkingmemory (Arnsten

et al., 2012), it is thought to be of less consequence for cortico-

cortical than for corticostriatal synapses (Ashby et al., 2007;

Miller and Buschman, 2008). This may be why we found that
corticostriatal synchrony was enhanced while corticocortical

synchrony was not. It is also possible that corticocortical (and

striatostriatal) connections require more experience for func-

tional circuitry to be established. Rule-specific beta synchroniza-

tion within the PFC has been observed (Buschman et al., 2012),

but it was for highly familiar rules and not during new learning, as

in this study.

The lack of learning-related changes in synchrony within

the PFC and STR was in contrast to changes between them.

Although we cannot exclude a ceiling effect for intrinsic syn-

chrony, it is unlikely. The PFC-PFC synchrony was weaker

than STR-STR synchrony, and yet it did not changewith learning.

Interestingly, the lateral connections between the STR medium

spiny neurons are sparse, with high failure rate (Plenz, 2003).

The stronger intrinsic STR synchrony, therefore, may arise

from a common signal external to the STR, such as the substan-

tia nigra pars compacta (SNpc): its dopaminergic neurons fire

spikes at highly regular intervals and could have pacemaking

functions (Surmeier et al., 2005). Recent studies have also sug-

gested that striatal synchrony can be regulated by the subthala-

mic nucleus (Marreiros et al., 2012).

We found that the STR had a stronger net influence on the PFC

than PFC on STR. This causal influence may be task dependent.

In a stimulus-stimulus association task, the PFC was reported to

exert larger causal influence on STR, consistent with their mono-

synaptic connections (Ma et al., 2013). However, the BG is

indeed thought to exert a strong influence on frontal cortex

(Ashby et al., 2007; Seger, 2008). The globus pallidus (which re-

ceives direct projections from the STR) affects the timing and

presumably strength of thalamocortical communication (Gold-

berg et al., 2013) and also sendsmonosynaptic feedback signals

to STR (Gerfen and Surmeier, 2011; Lerner and Kreitzer, 2011).

The dopaminergic projection from SNpc is denser (i.e., presum-

ably stronger) to STR than to the PFC (Lynd-Balta and Haber,

1994). Any of these signals, therefore, could shape both the

PFC but mostly the STR rhythms, thus making the STR LFPs

better predictors of PFC signals. The greater causal influence

of the STR on the PFC is consistent with the hypothesis that

STR learns about individual exemplars and then, via the rest

of the BG, ‘‘trains’’ their categories in the PFC (Antzoulatos

and Miller, 2011; Pasupathy and Miller, 2005; Seger and Miller,

2010). However, this process is continual and recursive: once

the categories are learned, they can be fed into the STR for

further learning, which may explain why, after learning, we found

category-specific synchrony from the PFC to the STR.
EXPERIMENTAL PROCEDURES

Animals

Data were acquired from two adult female macaque monkeys, maintained in

accordance with the National Institutes of Health guidelines and the policies

of the Massachusetts Institute of Technology Committee for Animal Care.

Task

The details of the task have been presented previously (Antzoulatos andMiller,

2011). Briefly, the animals initiated a trial by fixating on a central target. While

the animals maintained fixation, a randomly chosen category exemplar from

either category was presented for 0.6 s. Trials from both categories were

randomly interleaved throughout the session. One second after the exemplar
Neuron 83, 216–225, July 2, 2014 ª2014 Elsevier Inc. 223



Neuron

Synchronized Rhythms between PFC and Striatum
display offset, two saccade targets appeared on the left and right of the center

of fixation, and the animal had to make a single, direct saccade to the correct

target for reward. Category exemplars were random 7-dot constellations,

generated through distortion of the corresponding prototype (Figure 1).

Neurophysiology

Simultaneous recordings from PFC and STR were performed using multielec-

trode arrays, lowered at different PFC and STR sites every day. LFPs were de-

composed to their individual frequency components using wavelet analysis.

Functional connectivity (i.e., frequency-specific synchrony) between pairs of

LFP signals was computed as a PLV over two 500 ms trial epochs: the exem-

plar epoch (last 500 ms of exemplar display) and the decision epoch (last

500 ms before the animals’ saccade). PLV computes the circular mean of a

sample of phase differences (phase lags) and varies between 0 (when all phase

lags are uniformly distributed across 360 degrees) and 1 (when all phase

lags are concentrated at a single phase). Similar results on synchrony were

obtained when we computed coherence or pairwise phase consistency. For

differences in synchrony between two sets of trials (e.g., correct versus error,

or category A versus B), we used the same selectivity metric (discrimination in-

dex d0) we employed previously (Antzoulatos and Miller, 2011). To correct for

sampling bias, we randomly shuffled the trials between the two sets 200 times,

thus generating a randomization distribution that was used as surrogate data.

The observed d0 values were subsequently transformed into z scores based on

the surrogate data set and averaged across the population of electrode pairs.

Finally, causal connectivity analyses relied on a nonparametric Granger test,

which evaluates the degree to which signal A can predict (i.e., explain the

variance of) the frequency-specific oscillations of signal B. All computations

were done using MATLAB (see Supplemental Information for more details).
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