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Most neurophysiological studies of PFC-HPC interactions have 
examined spatial memory in rodents. It seems clear, especially in 
primates, that the HPC and PFC have broader roles, including non-
spatial explicit (declarative) memory. HPC damage causes deficits 
in non-spatial associative learning if implicit memory (familiarity, 
priming) cannot be used1–3. Likewise, PFC damage impairs explicit 
non-spatial associative memories, sparing implicit memory4,5. 
Human imaging has shown activation of both areas during associa-
tive memory6,7. In rodents, there is theta synchrony between the PFC 
and HPC during spatial memory performance8,9 and high-frequency  
ripple synchrony during subsequent sleep10, which is thought to 
reflect the HPC acquiring spatial information and then integrating 
it into cortical networks for long-term storage. A similar relationship 
is assumed for non-spatial memories11, but this has not been tested 
in primates. We found that, in monkeys, non-spatial associations  
are instead acquired by the PFC. In contrast, HPC activity was  
consistent with the idea that it provides learning-related frequency-
specific feedback to the PFC.

RESULTS
Paired associate learning task and behavioral results
We trained two adult rhesus monkeys (Macaca mulatta) to perform an 
object paired-associate learning task. The monkeys learned, through 
trial and error, four novel associations between arbitrary pairs of 
objects in each experimental session (Fig. 1a,b). Each of four cue 
objects (Fig. 1a) was randomly paired with one of two associate objects 
(A1 or A2). This 4-to-2 mapping encourages prospective recall of the 
associate12 and distinguished neural activity to the cue from retrieval 
of its associate. Monkeys routinely learned associations in a few 
hundred trials (313 of 348 associations learned to criterion; Fig. 1c),  
but measures of motivation, arousal and motor function changed little 

with learning (Supplementary Fig. 1). Multiple microelectrodes were 
lowered daily into lateral prefrontal cortex and hippocampus (Fig. 2),  
and each recorded spiking and LFP signals while the monkeys  
performed the paired-associate learning task.

PFC and HPC neurons reflect learned associations and outcomes
With learning, PFC neurons increasingly showed activity after the 
cue that anticipated its paired associate, with an across-trial pro-
gression similar to the improvement in performance (Spearman’s  
ρ = 0.59 with cue-epoch spike rate, P = 0.04, two-sided permutation 
test; Fig. 3a and Supplementary Fig. 2a,b). However, although HPC 
neuronal activity conveyed sensory signals reflecting the cue object 
(Supplementary Fig. 3), it did not reflect learning of the paired  
associate and showed no correlation with behavior (ρ = −0.21,  
P = 0.73). Instead, HPC reflected the trial outcome after the  
feedback (reward versus no-reward) about whether the behavioral 
response was correct or incorrect. This effect was stronger in the 
HPC than the PFC (P = 0.049, two-way area × learning-stage per-
mutation ANOVA; Fig. 3b and Supplementary Fig. 2c,d), and was 
stronger in the HPC in the output subregions (CA1, subiculum) 
than locally projecting subregions (CA3, dentate gyrus, P ≤ 10−4;  
Supplementary Fig. 4a). With learning, HPC activity shifted from 
stronger activation after incorrect to correct outcomes (P = 0.027, 
two-sided permutation test on early versus late learning stages 
(first versus last third of learning trials), with number of incorrect 
versus correct trials matched across learning; Fig. 3c and Online  
Methods). This shift was present in HPC output subregions  
(P = 0.005; Supplementary Fig. 4b), but not local-projection sub-
regions (P = 0.83; P = 0.04, subregion × learning-stage interaction), 
which may be related to a corresponding shift in communication 
between the HPC and PFC described below.
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Frequency-specific hippocampal-prefrontal 
interactions during associative learning
Scott L Brincat1,2 & Earl K Miller1,2

Much of our knowledge of the world depends on learning associations (for example, face-name), for which the hippocampus 
(HPC) and prefrontal cortex (PFC) are critical. HPC-PFC interactions have rarely been studied in monkeys, whose cognitive and 
mnemonic abilities are akin to those of humans. We found functional differences and frequency-specific interactions between 
HPC and PFC of monkeys learning object pair associations, an animal model of human explicit memory. PFC spiking activity 
reflected learning in parallel with behavioral performance, whereas HPC neurons reflected feedback about whether trial-and-error 
guesses were correct or incorrect. Theta-band HPC-PFC synchrony was stronger after errors, was driven primarily by PFC to HPC 
directional influences and decreased with learning. In contrast, alpha/beta-band synchrony was stronger after correct trials, was 
driven more by HPC and increased with learning. Rapid object associative learning may occur in PFC, whereas HPC may guide 
neocortical plasticity by signaling success or failure via oscillatory synchrony in different frequency bands.
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The learning-related change in HPC outcome bias could reflect 
either a sign-flip in the preference of individual neurons from  
incorrect to correct trials or just a relative modulation of neurons  
whose outcome preference is consistent throughout learning  
(broadly analogous to the distinction between ‘global remapping’ and 
‘rate remapping’ in rodent hippocampal place cells13). To distinguish 
between these possibilities, we trained a linear (logistic regression) 
classifier to discriminate correct versus incorrect trials based on  
HPC activity early in learning and asked whether the trained  
classifier weights transferred to predict trial outcome late in  
learning. The preference-flip model predicts that early learning–
derived weights and late-learning activity will have largely oppos-
ing outcome preferences, and will therefore produce prediction  
accuracy near (or below) chance. We instead found that an  
early learning–trained classifier predicted the outcome on 79% 

of late-learning trials, comparable to 89% for a classifier both  
trained and tested on (distinct) late-learning trials. This provides 
evidence that the observed shift with learning reflects modulation 
of a largely invariant hippocampal neural code for trial outcome 
(Supplementary Fig. 2d).

Band-specific synchrony reflects trial outcome and learning
We examined outcome-related neural communication using synchrony 
(phase-locking) between local field potentials (LFPs; Fig. 3a) recorded 
after the behavioral response and feedback. This revealed PFC-HPC 
synchrony in two frequency bands: a shorter latency theta-band  
(~2–6 Hz) synchrony and longer latency alpha/low-beta band (~9–16 Hz)  
synchrony. Alpha/beta synchrony was stronger after correct  
trials; theta synchrony was stronger after incorrect trials (Fig. 4a–c).  
Although PFC-HPC synchrony was present before the behavioral 
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Figure 1 Paired-associate learning task. (a) Task 
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After central fixation, a cue object was followed  
by a short delay and a choice object. If it was that 
cue’s paired associate, monkeys had to saccade  
to a target (whose varied location was not task  
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response through another delay until the correct  
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(c) Learning performance. Shaded area indicates 
mean ± s.d. of percent correct performance  
across all 348 associations (87 sessions), plotted 
as a function of the percentile of each session’s 
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Blue curve indicates the average sigmoidal  
learning curve fit to each association. White dot  
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response, it did not robustly reflect trial outcome (Supplementary 
Fig. 5). Theta synchrony following incorrect outcomes decreased with 
learning (P ≤ 10−4; Fig. 4d,e), whereas alpha/beta synchrony following 
correct outcomes increased with learning (P = 5 × 10−4, two-sided 
permutation test on early versus late learning). Although the theta 
effect was similar across HPC subregions, the alpha/beta increase with 
learning only occurred for synchrony between PFC and HPC output 
subregions (Supplementary Fig. 6). Thus, with learning, there was a 
shift in PFC-HPC synchrony from theta toward higher frequencies, 
paralleling the shift in HPC spiking activity from incorrect to correct 
trials (see above).

We also examined within-area LFP phase-locking and power. 
Although within-PFC synchrony followed a similar pattern as 
between-area synchrony (Supplementary Fig. 7), intra-hippocampal  
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Figure 3 Prefrontal neurons reflect learned associations and 
hippocampal neurons reflect trial outcome. (a) Mean percent  
of variance explained (PEV) by learned associate objects in PFC  
(left, n = 319 neurons) and HPC (right, n = 199) spiking activity,  
plotted across time after cue onset and learning trials. Bias correction 
resulted in negative values for some trials and times at which values  
were less than expected based on selectivity for random combinations  
of cue objects (Online Methods). Gray bars represent analytical  
epochs focusing on cue and delay periods. Insets show behavioral  
(gray) and neural “learning curves”—mean cue-epoch PEV across  
trials. Only PFC showed learning of associates in parallel with  
behavior. (b) Mean percent of variance in PFC (top) and HPC (bottom) 
neurons explained by trial outcome (correct versus incorrect), plotted  
across time after outcome feedback (reward versus no-reward)  
for early, middle and late learning stages (light-to-dark colors).  
Gray bars represent analytical epochs focusing on transient responses  
to outcome feedback and sustained activity during the inter-trial 
interval. Outcome was represented more strongly in HPC in the outcome 
feedback epoch. (c) Mean bias (signed PEV, Online Methods) in PFC 
(top) and HPC (bottom) neurons for correct (positive values) versus 
incorrect (negative) outcomes as a function of time and learning stages. 
HPC shifted from incorrect to correct outcomes with learning. Although 
there was a significant area × learning-stage interaction (P = 0.03),  
PFC showed no significant change with learning (P = 0.3).
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synchrony exhibited a distinct pattern in 
which theta synchrony increased, rather than 
decreased, with learning. This indicates the 
observed learning-related synchrony changes do not simply reflect 
state changes with global effects. LFP power, reflecting local syn-
chrony, exhibited a pattern broadly similar to cross-area synchrony 
(Supplementary Fig. 8), as would be expected from an interacting 
system with causal links between local and long-range synchrony. 
Outcome selectivity in cross-area synchrony could not, however, be 
fully attributed to local power differences, as it remained significant 
even when band-specific power was balanced across correct and 
incorrect trials (P ≤ 10−4, for both frequency bands, one-sample 
bootstrap test; Supplementary Fig. 9a).

Band-specific directionality of PFC-HPC causal influence
Theta and alpha/beta synchrony differed in the direction of putative 
causal influence. For theta frequencies, the phase of HPC LFPs lagged 
behind PFC (mean rel. phase = 39°, P ≤ 10−4, bootstrap test versus 
zero phase lag; Fig. 5a), consistent with a PFC to HPC directionality; 
the reverse was true for alpha/beta frequencies (−13.5°, P ≤ 10−4). We 
confirmed this using generalized partial directed coherence (GPDC), 
a frequency-domain analog of Granger causality that measures the 
degree to which signals can predict each other’s future values. It also 
revealed oscillatory interactions in the theta and alpha/beta bands 
(Fig. 5b), with stronger theta influence (dashed lines) from PFC 
to HPC (P = 0.01) and stronger alpha/beta influence (solid lines) 
from the HPC to PFC (P ≤ 10−4, direction factor in two-way causal 
direction × trial outcome permutation ANOVA). These differences 
remained significant when band-specific LFP power was balanced 
across correct and incorrect trials (P ≤ 10−4 for both frequency bands, 

direction factor in two-way causal direction × trial outcome permuta-
tion ANOVA; Supplementary Fig. 9b), indicating that the observed 
directionality cannot be explained by differences in local power. As 
above, theta and alpha/beta interactions were stronger for incorrect 
and correct trials, respectively (P ≤ 10−4 for both; Fig. 5b). With learn-
ing, there were significant decreases in incorrect-reflecting PFC to 
HPC theta influences (P = 0.021; Fig. 5c,d) and correct-reflecting 
HPC to PFC alpha/beta influences (P = 0.04, two-sided permutation 
test on early versus late learning), suggesting these interactions may 
be most important during the early stages of learning. In contrast, 
initially weak PFC to HPC alpha/beta influences reflecting correct 
outcomes increased with learning (P ≤ 10−4), eventually becoming 
even stronger than the HPC to PFC direction (P = 10−3, interaction in 
two-way causal-direction × learning-stage permutation ANOVA).

DISCUSSION
These results suggest different roles and interactions between the 
PFC and HPC during object associative learning. Only PFC neu-
rons showed neural correlates of learning the paired associates. The 
HPC was more engaged when feedback was given about whether the 
trial was correct or incorrect. Early in learning, incorrect outcomes 
activated HPC neurons and promoted cross-area theta synchrony 
with a stronger influence from the PFC to the HPC. Correct out-
comes, in contrast, promoted alpha/beta-band synchrony that was 
initially stronger in the HPC to PFC direction. However, as learn-
ing progressed, correct outcomes increasingly evoked PFC to HPC 
alpha/beta-band influences and HPC neuronal spiking. This shift in 
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Figure 5 Stronger theta PFC→HPC directional 
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influence. (a) Angular histograms of mean  
PFC-HPC LFP phase lag (n = 970 electrode  
pairs), pooled in alpha/beta-band (top) and  
theta-band (bottom) regions of interest. Colored 
tick marks indicate mean across all pairs. HPC 
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led for theta. (b) Frequency-domain directional 
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(d) Summary of learning effects: mean 
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of interest, as a function of learning stage. 
With learning, theta interactions showed 
a decreasing trend, whereas alpha/beta 
interactions shifted from a HPC→PFC to  
PFC→HPC directionality.
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HPC outcome coding (and other properties; Supplementary Fig. 10)  
distinguishes it from unipolar positive and negative reward-prediction- 
error signals in the midbrain dopaminergic nuclei14 and lateral 
habenula15, respectively. It may, however, reflect a functional shift in the 
importance of negative and positive feedback. Early on in trial-and-error  
learning, errors provide critical information about which pairs of 
objects should not be associated. But once associations are learned, 
errors are more likely to simply reflect lapses in response inhibition 
or attention rather than true errors of associative choice. In contrast, 
positive feedback following correct trials16, and the likely resulting 
dopamine release in hippocampus17, have been shown to preferen-
tially enhance long-term consolidation of new learning. Thus, the 
shift in HPC bias from incorrect to correct outcomes as learning 
progresses is consistent with a transition from neural signals that 
support acquisition to those that promote consolidation.

The HPC is critical for formation of explicit memories. Rodent 
neurophysiological studies suggest that it acquires spatial memo-
ries and consolidates them in the neocortex, including PFC8,10.  
The primate HPC shows rapid activity changes related to spatial 
associative learning18. But the HPC is also known to be critical for 
non-spatial memory in rodents11,19 and especially in primates, where 
it has a general role in explicit memory formation1,3. Lesion studies 
have suggested that perirhinal cortex—part of the medial temporal  
lobe system3 that includes the HPC—may be more critical for object 
associative learning than the HPC19,20, and neural correlates of  
object associations have been seen in perirhinal, prefrontal and infero-
temporal cortex12,21–23. However, these studies examined associations 
that were familiar or learned gradually (over days or weeks), situations 
known to favor neocortical representation. Our results suggest that 
rapid acquisition of object associations also occurs in the neocortex, 
not the HPC, perhaps in the PFC in particular given its importance 
for behavioral flexibility. Object associations may lack the context 
required for explicit HPC representation24.

Both the HPC and PFC signal trial outcome, differentiating between 
correct and error trials25,26. Our results suggest that this information 
is communicated between HPC and PFC via synchrony at different 
frequencies: theta for incorrect and alpha/beta for correct. Human 
and animal studies suggest that oscillatory activity is associated with 
memory encoding and retrieval27–29, as well as other cognitive proc-
esses30–32. Higher frequency (gamma) oscillations are thought to 
underlie the transient formation of local neuronal ensembles, whereas 
lower frequencies may recruit larger networks resulting from their 
longer integration times31,33,34. Thus, the lower frequency (theta and 
alpha/beta) synchrony we observed may reflect formation of larger 
networks connecting PFC, HPC, and likely many other cortical and 
subcortical structures. Further experimentation will be necessary to 
delineate the extent of these networks and dissect out how each of 
their nodes function in learning. Human EEG also shows theta oscil-
lations with a frontal source reflecting conflict or error35; our results 
suggest that these oscillations are propagated to hippocampus during 
learning. We did not, however, observe the sustained bouts of theta 
oscillations typically seen in locomoting rodents8,9,36; it remains an 
open question whether our theta-band synchrony reflects a distinct 
or related phenomenon.

But what computational role might these particular frequencies 
have? Growing evidence suggests that beta oscillations are ideal for 
maintaining active cell assemblies and their associated cognitive 
states37. This hypothesis is consistent with the idea that alpha/beta 
oscillations might have a role in maintaining neural representations 
active during correct associations. Studies of synaptic plasticity have 
also shown that low-frequency synaptic stimulation fosters long-term 

depression, whereas high-frequency stimulation fosters long-term 
potentiation38, with the crossover point at ~8–10 Hz. PFC-HPC theta 
interactions may therefore have weakened synapses active during 
incorrect associations, whereas alpha/beta interactions strengthened 
those active for the correct associations.

In sum, these observations show that rapid formation of non- 
spatial associations may occur in the PFC, not the HPC. The main role  
of the HPC appears to be signaling trial outcome, signals which are 
communicated with PFC via band-specific oscillatory synchrony 
and may be involved in guiding neocortical learning. The results 
also provide further support for the idea that synchrony in differ-
ent frequency bands may have functionally different roles in neural 
communication30,34.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Subjects. All experiments were performed in two adult (~8–10 years old) rhesus 
macaques (Macaca mulatta), one male and one female, weighing 9 and 7.5 kg,  
respectively. The monkeys were pair-housed under a 12-h light/dark cycle  
(7 a.m. to 7 p.m. light), with experiments performed around the middle of their 
light cycle. Both monkeys were experimentally naive at the start of this study. 
Each monkey was implanted under general anesthesia with a titanium post for 
head restraint and two cylindrical 20-mm diameter titanium recording chambers. 
Chambers were stereotaxically placed over PFC and HPC in the left hemisphere 
based on coordinates from structural MRI scans in each monkey. All procedures 
followed the guidelines of the MIT Animal Care and Use Committee and the  
US National Institutes of Health.

neurophysiological methods. Up to 16 microelectrodes in PFC, and up to 4 in 
HPC, were acutely inserted into the brain and removed at the end of each daily 
experiment. All recordings from PFC, and most from HPC, were performed with 
epoxy-coated tungsten microelectrodes (FHC). Some HPC recordings used 24-
channel linear probes with 300-µm spacing between adjacent platinum-iridium 
recording contacts (U-Probes, Plexon). For PFC, electrodes were lowered through 
the dura using a custom-built screw microdrive assembly. For HPC, electrodes 
were inserted through a 25 gauge transdural cannula using a motorized micro-
drive system (NAN-S4, NAN Instruments).

Neural activity was amplified, filtered, digitized and stored using an integrated 
multichannel recording system (Multichannel Acquisition Processor, Plexon). 
The signal from each electrode was amplified by a high input–impedance  
headstage (HST/8o50-G1, Plexon), then separately filtered to extract spiking 
activity (250–8,000 Hz) and local field potentials (LFPs, 0.7–300 Hz). Both  
signals were referenced to ground, rather than to one of the electrodes, eliminat-
ing the possibility of artifactual synchrony due to neural signals measured by the 
reference itself. The spiking signal was threshold-triggered to separate neuronal 
spikes from background noise, and individual spike waveforms were digitized 
at 40 kHz and sorted offline into isolated neurons and multi-units using a com-
bination of waveform shape and amplitude features (Offline Sorter, Plexon). To 
minimize any sampling bias of neural activity, we did not prescreen activity for 
responsiveness or task selectivity. Instead, electrodes were advanced until one 
or more neurons could be isolated, and then data collection began. Neurons 
were included in analyses only for the extent of time during which they were 
well isolated from background noise and other neurons. LFPs were recorded 
continuously at 1 kHz, and corrected offline for filtering-induced phase shifts 
(FPAlign Utility, Plexon)40. Only LFPs from electrodes recording at least one 
neuron (isolated or multiunit) were used for all analyses, to ensure they were in 
the appropriate cell layer.

Electrodes were targeted using custom MATLAB software that co-registered 
each monkey’s implanted recording chambers and structural MRIs in stereotaxic 
coordinates, and resliced the MRIs along the electrode’s path. The sequence 
of distinct neurophysiological compartments (gray matter, white matter and 
sulcus/ventricle) along the electrode’s path to HPC was compared online to 
these images. HPC was also identified by its characteristic high-amplitude LFPs, 
low spike rates and bursty spiking patterns39 (Fig. 2c). Recordings targeted  
dorsolateral and ventrolateral PFC (parts of areas 46, 45 and 8; Fig. 2a), and 
all subregions (dentate gyrus/CA4, CA3, CA2, CA1, and subiculum) of the  
anterior ~3/4 of the hippocampal formation (Fig. 2b). For hippocampal  
subregion analyses, recordings were pooled across the dentate gyrus, CA3, and 
CA2 (HPC input/local-processing), and across CA1 and the subiculum (HPC 
output). A total of 496 PFC and 270 HPC neurons (156 from locally projecting 
and 111 from output subregions) were recorded across all sessions.

To restrict analysis to only those sessions with successful learning, we  
used a learning criterion of 32 correct responses over the final 50 trials of each 
association (p ≈ 0.01, binomial test). Only sessions where all four associations 
were learned to criterion were included in the reported analyses (61 of 87 sessions,  
including a total of 319 PFC and 199 HPC neurons (104 from locally  
projecting and 93 from output subregions)). No statistical methods were used to 
pre-determine sample sizes, but our sample sizes are similar to those generally 
employed in the field.

Behavioral task. Monkeys performed an object paired associate learning task  
that required them to rapidly learn arbitrary associations between pairs of objects. 

For each daily recording session, six objects never before seen by the monkey were 
chosen from an image database (Hemera Photo-Objects). Four were randomly 
designated as cue objects and the remaining two as associate objects, and each 
cue was randomly paired with an associate. The resulting many-to-one (4-to-2) 
mapping from cues to associates distinguished neural activity related to the cue 
from retrieval of its associate (see below), and encouraged prospective recall of 
the associate before its appearance12. The monkeys’ task was to learn, through 
trial-and-error guessing, which associate was paired with each cue object.

Each trial started when the monkey acquired fixation of a white dot at the center 
of the stimulus screen. After a blank fixation baseline (500 ms), a cue object (foveal, 
3° wide) was presented (500 ms), followed by a blank delay interval (750 ms)  
in which the monkey was expected to recall the paired associate object from 
memory. The two associate objects were then presented in a randomly-ordered 
series, with each presentation (500 ms) followed by a brief delay (100 ms) and 
a response target (250 ms, 7.5° to the left or right of fixation). The monkey was 
required to make a saccadic response to the target immediately following the 
correct paired associate for the given cue. Response to the correct associate was 
rewarded with juice and a short wait (3 s) until the subsequent trial. Response 
to the incorrect associate was punished by withholding reward, displaying a red 
“error screen” as secondary reinforcement (1.5 s), and a longer wait (6 s) for 
the subsequent trial. The location (left versus right) of the response target after 
each associate was randomized and unrelated to task performance, so a specific 
motor plan could not be formed until the target was shown, and striatal-mediated 
procedural (stimulus-response) learning2 could not be used to correctly perform 
the task. Saccadic responses were used because their stereotypy obviates the pos-
sibility that changes in motor performance might be confounded with associative 
learning (Supplementary Fig. 1c).

Each session began with a short block of 36 trials where the cue and associate 
objects for that day were passively presented to the monkey under fixation control 
(3 objects per trial at 500 ms each, 750-ms blank inter-stimulus interval), and a 
block of 96 identity match-to-sample trials in which each object was matched to 
itself, rather than to an arbitrary associate. These trials familiarized the monkeys 
with the stimuli, and eliminated any contribution of novelty-based or familiarity- 
based memory processes41–43 to our results.

Eye movements and pupil size were monitored and recorded at 1 kHz using an 
infrared eye tracking system (EyeLink II, SR Research). Fixation was required to 
be maintained within a 1.5° window around the fixation dot through the entire 
trial, until the response period; fixation breaks terminated the trial without 
reward. Behavioral monitoring and visual stimulus presentation were handled 
by the NIH CORTEX real-time control system, and displayed on a CRT monitor 
with a 100-Hz refresh rate.

data analysis. For all behavioral and neural analyses, only trials where the mon-
key made a valid response to the correct or incorrect associate were analyzed, thus 
excluding trials where the monkey broke fixation or failed to respond.

Changes in behavior and neural activity across learning were measured by 
performing analyses independently in sliding trial windows, each defined by a 
percentile of the total number of session trials to normalize for differences in 
session length. Analyses focused on contrasts between (a) the recalled associate 
objects (signals reflecting associative learning), and (b) correct and incorrect 
trial outcomes (signals likely used to guide learning). For (a), neural signals 
were temporally aligned to retrieval cue onset, and session trials were finely 
sampled via sliding trial windows (Fig. 3a). For (b), neural signals were aligned 
to the outcome feedback (reward versus no-reward) on each trial. Because the 
proportion of correct and incorrect trials changes with learning, we balanced 
their trial numbers for all analyses of trial outcome, which necessitated coarser 
sampling of session trials (Figs. 3b,c and 5). First, for a given session, we found 
the smallest number of correct or incorrect trials in any trial window (usually 
incorrect trials late in learning). We then randomly sampled only this number 
of trials from each outcome (correct or incorrect) within each trial window, 
calculated the statistic of interest for this subsample of trials, and averaged the 
resulting statistic across several random samplings to obtain a robust estimate. 
Note that correct and incorrect trial outcomes entail a number of perceptual dif-
ferences that might affect neural activity (for example, auditory click of reward 
solenoid, tactile/gustatory responses to juice reward). These distinctions remain 
constant across learning trials, however, so we focus our analysis on changes in 
activity with learning.
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Statistics. Significance testing was conducted using random resampling meth-
ods that make no assumptions about the data distribution44. To test hypotheses 
that a statistic is distinct from a specified value (as in a one-sample t test), we 
used a bootstrap where the distribution of the statistic is estimated empirically 
by recalculating it repeatedly from random resamples-with-replacement of the 
observed data. The P value is the proportion of resampled values less than the 
specified comparison value (for example, zero). To test hypotheses that a statistic 
takes different values for different groups (as in a one-way ANOVA), we used 
permutation tests in which the null distribution reflecting no actual difference 
is estimated by repeatedly shuffling data values between groups. The p value is 
the proportion of shuffled values larger than the actual observed value. For com-
parisons involving two factors and their interaction (as in a two-way ANOVA), 
data values were shuffled across observations while maintaining the set of factor 
labels for each observation, and therefore any correlations between factors. The 
p value for each factor and interaction was calculated as above. At least 10,000 
iterations were performed for each test.

code availability. All analyses were performed using custom code written in 
MATLAB (MathWorks), available from the authors upon request. In addition, 
as mentioned below, some analyses used functions available in open-source 
MATLAB code: the Torrence & Compo wavelet45 (http://paos.colorado.edu/
research/wavelets/), BSMART46 (http://www.brain-smart.org/), FieldTrip47 
(http://fieldtrip.fcdonders.nl/), and Chronux48 (http://www.chronux.org/) 
toolboxes.

Behavioral analyses. Behavioral learning curves were estimated in two ways. 
A sliding window analysis (Fig. 1c) measured the percent of correct responses 
within a window of width equal to 10% of all trials in a given session, stepped 
in 2.5% increments from the start to the end of the session. This permits identi-
cal trial sampling for behavioral and neural data analysis, but underestimates 
learning rate due to the smoothing inherent in averaging across several abrupt, 
laterally-shifted learning curves49. To estimate the true learning rate, we also 
fit binary (correct/incorrect) outcomes across trials with a bounded logistic 
curve (Fig. 1c)

p x a b a
xcorrect response on trial

exp
( ) = + −

+ − −



1 m

s

where the probability p of a correct response on each trial is estimated as a sig-
moidal learning curve with center µ, width σ (inversely related to learning rate), 
initial guess rate a (~0.5 for our two-choice task), and post-learning asymptote 
b. These four parameters were fitted for each learned association using nonlinear 
least-squares estimation (MATLAB lsqnonlin function) with reasonable param-
eter bounds based on the data.

Spike preprocessing. For analyses of spiking activity, spike times were converted into 
smoothed rate (spike density) functions via convolution with a Hann window:
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with width parameter a = 175 ms (nearly identical to a 70 ms s.d. Gaussian, but 
with finite spread of ± a). For summary analyses, spike rates were instead calculated 
within time epochs designed to capture either primarily transient (100–500 ms  
after retrieval cue or outcome feedback onset) or sustained (600–1,350 ms) neural 
responses during the delay or inter-trial interval periods.

To ensure our results were not affected by any slow fluctuations in spike rate 
unrelated to task factors, we removed them before further analysis. Slow trends 
were estimated at each time point/epoch by convolving the spike rate across trials 
with a Gaussian broad enough to blur out rate differences related to individual 
conditions (s.d. = 32 trials = 8 repetitions of all associations). This estimate was 
subtracted from the individual-trial spike density functions before further analysis. 
Results were similar, but with weaker signal-to-noise, without this detrending.

Spike rate selectivity. To measure the strength of spike rate signals reflecting each 
task factor of interest (i.e., cue and associate object identities, trial outcome), we 

calculated the percent of explained variance (PEV) in the smoothed rate functions 
by the task factor at each time point (Fig. 3a,b). For analysis of trial outcome, 
this was calculated via a one-way ANOVA (two levels: correct, incorrect). For 
cue and associate identity, we used a nested two-way ANOVA50, which measures 
the effect of a nesting factor (associate: A1, A2) while partialing out the effect of 
a nested factor (cue: C1.1/1.2 nested within associate A1, C2.1/2.2 within associate 
A2; Fig. 1a). To examine PEV across learning, these analyses were performed 
independently within sliding trial windows (for cue/associate identity, window 
width = 10% and step = 2.5% of total number of session trials; for trial outcome, 
both = 33%, due to necessity of trial-balancing). Because the traditional formula-
tion of the PEV statistic

PEV SS SSGroups Totalh2 = /

is biased toward positive values, we instead used the bias-corrected  
formulation51 

PEV
SS df MS

SS MS
Groups Groups Error

Total Errorw2 =
−

+

where SSGroups and SSTotal are the between-groups (task conditions) and total 
sums of squares, dfGroups is the groups degrees of freedom, and MSError is the 
mean squared error. This resulted in an unbiased metric, with an expected value 
of zero when there is no difference between conditions. Similar results were 
obtained using shuffle-corrected Shannon mutual information or area under 
ROC curve analyses (Supplementary Fig. 11).

As formulated, another unwanted signal might still contribute to associate-
object PEV. Given that it is computed as a contrast between pairs of cue-object 
conditions (that is, A1 = [C1.1 or C1.2] versus A2 = [C2.1 or C2.2]), some portion 
of associate PEV might be due to selective activation of a neuron by random 
combinations of cue objects. We reasoned that if this were the case, activation to 
combinations of cues not paired with same associate (for example, C1.1 and C2.2) 
would be just as likely as to cues paired with same associate (for example, C1.1 and 
C1.2). To control for this possibility, we recalculated associate-object PEV using all 
mispaired cue-associate nesting relationships, and subtracted the average of these 
from the PEV calculated from the actual, proper condition grouping; the resulting 
corrected statistic is plotted in Figure 3a. Simulations showed this statistic to have 
an expected value >0 for neurons active for a specific associate object, but ≤0 for 
neurons activated by one or more cues not paired with the same associate.

To measure population neural bias toward representing one condition  
over another (that is, correct more than incorrect outcomes or vice versa),  
we calculated a signed version of the PEV (Fig. 3c), where the PEV at each  
time point is multiplied by the sign of the difference in rate between the two 
conditions of interest

PEV PEV *sign rate ratesigned cond condt t t t( ) = ( ) ( ) − ( )( )1 2

This metric has an expected value of zero if the two conditions are represented 
equally across the neural population.

Finally, for display purposes only, spike selectivity plots were smoothed with 
a two-dimensional Gaussian with s.d. (5% of session length, 50 ms) and interpo-
lated to a finer sampling grid.

Spike rate classification. To assess whether the learning-related change in HPC 
trial outcome bias reflected a switch in the preference of individual neurons, 
or simply a relative modulation of neurons with consistent preference through 
learning, we performed a population classification analysis. A logistic regression 
(linear) classifier was trained to discriminate correct versus incorrect trials based 
on the ITI-epoch spike rates of all 199 HPC neurons (with neurons recorded in 
different sessions concatenated into a ‘pseudo-population’52). From each neuron, 
we randomly selected 20 trials (10 correct, 10 error) to train the classifier and 
10 distinct trials (5 correct, 5 error) to test its predictive accuracy; results were 
averaged across 100 random trial selections. We asked whether classifier weights 
trained on trials selected from the early-learning stage could transfer to accurately 
predicting outcome in late-learning trials—the preference-flip model predicts 
they would not generalize, while the consistent-preference model suggests they 
would. As a baseline for comparison, we examined the accuracy of classifiers 

http://paos.colorado.edu/research/wavelets/
http://paos.colorado.edu/research/wavelets/
http://www.brain-smart.org/
http://fieldtrip.fcdonders.nl/
http://www.chronux.org/
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both trained and tested on independent sets of late-learning trials. A very similar 
pattern of results was obtained when classifying PFC instead of HPC activity (but 
with lower overall accuracy), and when using Fisher linear discriminant, linear-
kernel support vector machine (SVM), or Poisson naive Bayes classifiers.

lFP preprocessing. Any power line noise, and its harmonics, was estimated  
by fitting sinusoids in 5-s sliding windows, and subtracted them from the  
raw data (rmlinesmovingwinc function in Chronux toolbox48). To remove the 
contribution of signal components phase-locked to trial events (event-related 
evoked potentials), these were measured as the across-trial mean of the raw 
LFP and subtracted off each individual trial’s LFP before further analysis53. This 
correction was performed separately for each trial window and condition, to 
account for any possible changes in evoked activity across these factors. For the 
multivariate autoregression-based causality analysis (see below), we addition-
ally normalized each trial by the across-trial s.d., and downsampled the LFP 
signals to 200 Hz54.

For summary analyses, LFP metrics (power, synchrony, etc.) were pooled 
within spectrotemporal regions with time ranges based on epochs used for spike 
analyses, but extended by 50% to account for the longer duration LFP responses 
(100–700 and 600–1,725 ms), and with frequency ranges based on our empirical 
results (2–6 and 9–16 Hz, respectively).

lFP-lFP synchrony analysis. For measures of LFP-LFP synchrony, LFPs  
were transformed into the time-frequency domain using complex Morlet  
wavelets45 (wavenumber = 6, evaluated at 0.25 octave intervals from 1–256 Hz), 
from which we extracted their phase. The strength of neural synchrony was  
quantified by the phase-locking value (PLV)55, the length of the across-trial  
vector average of cross-electrode differences in phase ϕ, for a given time  
point t and frequency f 

PLV f t
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PLV measures the degree to which LFP pairs maintain the same phase  
relationship—independent of their absolute phases and amplitudes—across 
repeated trials. This analysis was performed separately for each electrode pair, 
trial window, and condition. To quantify the difference in synchrony between 
task conditions, we subtracted the PLV(f,t) spectrogram for one condition from 
another (for example, correct – incorrect outcome). This was normalized to a 
z-score-like statistic by subtracting the mean, and dividing by the s.d., of the 
between-condition PLV difference calculated across 50 random permutations 
of the condition labels across trials. Similar results were obtained using classical 
coherence or pairwise phase consistency56 instead of the PLV.

For display purposes only, LFP synchrony plots were smoothed with a two-
dimensional Gaussian with s.d. (0.15 octaves, 100 ms) and interpolated to a finer 
sampling grid.

lFP-lFP causality analysis. We measured directional influences between the 
PFC and HPC in two ways. First, we calculated the mean phase lag between LFPs 
on each pair of electrodes
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To test whether the distribution of phase lags across all electrode pairs was  
significantly different from zero—suggestive of a directionality between the  
two signals—we used a circular bootstrap test57.

Though consistent phase lags much smaller than a full oscillatory cycle  
(Fig. 5a) are suggestive of directional influences, they are in principle ambigu-
ous because of the cyclic nature of the signals. We therefore also computed 
the GPDC58 between pairs of LFPs in each area. GPDC is a frequency- 
domain analog of Granger causality59, which measures putative causality in 
terms of the degree to which one signal (LFP) can be predicted by past values 
of another signal (LFP from a distinct electrode), with its own past history 

factored out. This approach is based on a multivariate autoregressive (MVAR) 
model fit to pairs of LFP time series

X A Xt t k t
k

p
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=
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1
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where X(t) is the data vector of the pair of LFP signals at time t, Ak the 2 × 2 
matrix of autoregressive coefficients at the kth time lag, p is the maximum number 
of lags (model order), and ε(t) the residual prediction error. We evaluated the 
Bayesian Information Criterion on a few representative LFP pairs to select a 
fixed model order of 17 (max lag 85 ms). MVAR models were fit separately on 
LFP data within each sliding time window (500-ms width, 250-ms step between 
successive windows), trial window, and task condition. The parameters of the 
MVAR model in each window were estimated using Morf ’s modification of the 
Levinson-Wiggins-Robinson algorithm46,60. The fitted MVAR parameters were 
then transformed from the time domain into the frequency domain
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where I is the p × p identity matrix, fsamp is the LFP sampling rate, and the  
spectral coefficients A(f) were evaluated at 1-Hz steps from 1–64 Hz. The GPDC 
reflecting the directional influence of LFP1 on LFP2 is then calculated as

GPDC
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where σk
2 is the variance of the prediction error for channel k. Similar results 

were obtained using classical spectral Granger causality61.
For display purposes only, LFP causality plots were smoothed with a  

two-dimensional Gaussian with s.d. (1 Hz, 100 ms) and interpolated to a finer 
sampling grid.

controls for other behavioral changes. To examine whether observed changes 
in neural activity with learning might be related to changes in arousal across  
the learning session (Supplementary Fig. 1e), we measured pupil size,  
which has been strongly linked to global arousal and associated noradrenergic 
modulation62–64. Pupil diameter was calculated during the delay period, when  
it is least influenced by external factors63.

To examine whether neural changes might be attributed to ingestion-related 
orofacial movements (Supplementary Fig. 1f), we made electromyographic 
(EMG) recordings from the dorsal lip muscles65 (orbicularis oris) in separate 
post hoc experiments. Since the original animals used for all other reported  
results were no longer available, EMG signals were obtained from two ani-
mals performing a working memory–guided saccade task66 (4 sessions) or a  
visuomotor associative learning task67 (6 sessions). Standard surface EMG  
methods were used68 (monopolar recording from 6 mm Ag/AgCl disc  
electrodes; filtered 10–250 Hz; full-wave rectified).

Power-stratification controls. To ensure that the observed inter-area synchrony 
and causality effects were not due to differences in within-area LFP power, we 
repeated these analyses with power balanced across the relevant conditions 
(Supplementary Fig. 9). Power balancing was performed using a stratification 
method47,69 that trims trials with extreme power values from each condition 
until the histogram of trial power values is closely matched between compared 
conditions (that is, correct and incorrect outcomes).

A Supplementary methods checklist is available.
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