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SUMMARY

Working memory is thought to result from sustained
neuron spiking. However, computational models
suggest complex dynamics with discrete oscillatory
bursts. We analyzed local field potential (LFP) and
spiking from the prefrontal cortex (PFC) of monkeys
performing a working memory task. There were
brief bursts of narrow-band gamma oscillations
(45–100 Hz), varied in time and frequency, accom-
panying encoding and re-activation of sensory infor-
mation. They appeared at a minority of recording
sites associated with spiking reflecting the to-be-
remembered items. Beta oscillations (20–35 Hz)
also occurred in brief, variable bursts but reflected
a default state interrupted by encoding and decod-
ing. Only activity of neurons reflecting encoding/
decoding correlated with changes in gamma burst
rate. Thus, gamma bursts could gate access to,
and prevent sensory interference with, working
memory. This supports the hypothesis that working
memory is manifested by discrete oscillatory dy-
namics and spiking, not sustained activity.

INTRODUCTION

The ability to keep information available in the absence of sen-

sory input is a key component of working memory (WM) and one

of the most studied cognitive functions (Fuster and Alexander,

1971; Goldman-Rakic, 1995; Miller and Cohen, 2001). It is widely

assumed to have a neural correlate in sustained neural activity in

higher-order cortical areas, such as the prefrontal cortex (PFC)

(Fuster and Alexander, 1971; Funahashi et al., 1989; Goldman-

Rakic, 1995; Miller et al., 1996; Pasternak and Greenlee, 2005).

The mechanism, at first glance, seems straightforward: a sensory

event elicits spiking activity that ismaintaineduntil that information

isneeded.Thisseeminglycontinuousdelayactivitymay,however,

reflect averaging across trials and/or neurons.Closer examination

has suggested that the underlying dynamics are more complex

(Rainer and Miller, 2002; Shafi et al., 2007; Stokes, 2015). For
example, random sampling of neurons indicates that individual

neurons bridging a multi-second memory delay is rare. Instead,

most neurons show brief bouts of activity with variable onset

latency and durations, sprinkled throughout the delay (Cromer

et al., 2010; Shafi et al., 2007), suggesting highly dynamic activity

(Durstewitz and Seamans, 2006; Stokes et al., 2013).

Continuous, persistentWM information canbe simulatedby at-

tractor networks, originally serving as models for maintenance of

saccade information (Amit andBrunel, 1997;Compte et al., 2000).

In these models, information about saccade location is held in a

persistent state without interruption. This state corresponds to a

dynamic attractor and is supported by recurrent connections

that sustain a pattern of activity. If this activity is disrupted, the in-

formation it was conveying is lost. By contrast, a related class of

attractor models suggests that WM activity is non-stationary. In-

formation is only expressed as spiking during short-lived attractor

states. Between the active states, information is held by selective

synaptic changes in the recurrent connections and therefore not

lost with disrupted activity (Sandberg et al., 2003; Mongillo

et al., 2008; Lundqvist et al., 2011, 2012). The limited lifetime of

the attractor states has two advantages. First, less spiking is

needed to store the information; energy is conserved during the

silent states.Second,as information isnot lostwhenactivity isdis-

rupted, attractors can hold multiple items in WM with minimal

interferencebetween them (or fromsensory distractions). In these

models, different items are serially encoded and read out, result-

ing in brief activations of spiking in the coding assemblies.

One of these models (Lundqvist et al., 2011; Figure 1A) imple-

mented the functionality of short-lived attractor states using con-

nectivity and synaptic plasticity constrained by known biology.

The model predicts that a burst of gamma oscillations accom-

panies each attractor state (Figures 1B and 1C) and that the life-

time of such bursts should correspond roughly to an alpha/theta

cycle. The gamma oscillations result from fast, local feedback

inhibition (Figure 1C), which has two chief consequences. First,

firing rates are reduced during attractor retrieval. This state is

otherwisecharacterizedby runawayexcitationbut insteadexcita-

tion and inhibition are dynamically balanced, leading to the low-

rate irregular firing observed in biology (Lundqvist et al., 2010).

Second, feedback inhibition normalizes firing rates in a winner-

takes-all dynamic, resulting in selective (informative) spiking in

only a small subset of neurons (those that are part of the attractor;

seeFigure 1). This further predicts that there should be a close link
Neuron 90, 1–13, April 6, 2016 ª2016 Elsevier Inc. 1

mailto:ekmiller@mit.edu
http://dx.doi.org/10.1016/j.neuron.2016.02.028


Figure 1. Schematic View of the Model and Model Predictions

(A) Spatial organization of the network. Locally, cells coding for the same stimulus are recurrently connected into local clusters. Several competing clusters share

feedback inhibition from nearby inhibitory basket cells. Cell assemblies are formed by recurrent long-range connections connecting several spatially distributed

local clusters, each receiving inhibition from a distinct pool of basket cells.

(B) The network displays non-linear attractor dynamics in which various cell assemblies are briefly activated. These activations are initially triggered by stimuli.

Following a cell assembly activation, the synapses in the recurrent connections will be potentiated within a certain time window. This will cause the assembly to

spontaneously reactivate once it has been triggered by an external stimulus. In this way information about multiple stimuli can be held in WM with attractors,

which code for various external stimuli, taking turns in a sequence of reactivations. In the LFP, these activations should be manifested as non-linear transitions

into short-lived states with high narrow-band gamma power. These high-power states should become more common in selective sites (but not in non-selective

sites, compare sites 1 and 2 with site 3) as WM load increases, leading to enhanced average gamma power with load.

(C) Oscillations (top) are created by local feedback inhibition (bottom) shared by several local clusters of pyramidal cells. During baseline the oscillations are in the

beta range and cells from all clusters spike at a similar rate. During attractor activations, there is a slight excitatory bias (from the recurrent connections and

assembly specific synaptic potentiation) in one of the assemblies causing this group to consistently reach firing threshold first after each wave of feedback

inhibition. As they spike, they activate a new wave of feedback inhibition, shutting down the rest of the cells. Computationally, this creates a winner-takes-all

dynamic with spiking only in the (temporarily) most excitable assembly coding for a stimulus. This selectivity in firing implies that the stimulus information

conveyed by the corresponding neurons increases. The increased excitation in this state speeds up the oscillations to gamma range.
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between information in spiking and gamma power that goes

beyond thebroad-band increase ingammapower accompanying

general increases in spiking activity. Themodel also predicts that,

as more items are stored in the network, they are replayed more

and more often leading to a higher density of gamma bursts (Fig-

ure 1B; Lundqvist et al., 2011). This could explain observed load-

dependent power changes in gamma (Howard et al., 2003; Korn-

blith et al., 2015; Honkanen et al., 2015), beta (Kornblith et al.,

2015; Honkanen et al., 2015), and theta/alpha (Jensen and Te-

sche, 2002; Palva et al., 2005) in primate cortex.

Non-stationarymemorydelay activity alsohasbeensuggested

by observations that PFC activity and gamma oscillations show

slow frequency modulation (Jensen and Tesche, 2002; Palva

et al., 2005; Watrous et al., 2013; Axmacher et al., 2010). How-

ever, the model makes more specific predictions. On a single

trial, there should be no prolonged baseline shift in gammapower

following stimulus encoding. Gamma power should instead

make sharp transitions into the high-power attractor state and

repeatedly fall back to pre-stimulus baseline levels throughout
2 Neuron 90, 1–13, April 6, 2016 ª2016 Elsevier Inc.
the WM delay (thus manifesting what Stokes, 2015, refers to as

active-silent states; Figure 1B). As a result, on a trial-by-trial

basis, PFC activity is not modulated at slower frequencies in a

highly periodic fashion. Instead gamma bursts occur irregularly

and the slow periodicity previously observed is instead due to

the lifespan of the gamma bursts. The power modulation only

appears as periodic when averaging across trials.

We sought to test model predictions in local field potential

(LFP) and spike data from the PFC of monkeys performing a

multi-item memory task. We did so by performing a unique

trial-by-trial analysis of neural activity. This avoided the cross-

trial averaging that would obscure the complex temporal dy-

namics predicted by the model.

RESULTS

We trained two monkeys to retain multiple colored squares over

a short memory delay period (Figure 2A). Each trial beganwith an

encoding phase, where two or three squares appeared in a



Figure 2. Experimental Setup and LFP Spectral Power

(A) Each trial consisted of three phases: encoding, delay, and test. Following fixation on a white dot in the center of the screen, two (top) or three (bottom) colored

squares were sequentially presented to the monkeys. Following a delay period, the stimulus sequence was repeated with the color of one square changed. The

monkeys were rewarded for a saccade to the changed square.

(B–D) Spectrograms, not normalized to baseline, of raw LFPs for monkey M1 (left) and M2 (right). The following is displayed for each monkey: (B) average spec-

trogram fromall electrodes andcorrect trials during encoding (time 0 refers to the onset of the first stimulus) anddelay in two-item trials (S1 andS2 refer to samples 1

and 2, respectively); (C) example of spectrograms from single electrodes, recorded the same day, that display non-modulated (left) or gamma-modulated profiles

(right); (D) average spectrograms fromall electrodes in two-item trials including (right) or excluding (left) neurons that carry information about the presented squares.

Power in all spectrograms estimated using multi-taper time-frequency analysis (Experimental Procedures). See also Figures S1, S2, and S3.
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sequence, each in a unique location. After a memory delay (1.2

or 0.6 s), there was a test phase in which a new sequence of

squares appeared in the same locations as during the encoding

phase. However, one of the squares in the test sequence had a

different color. Themonkey had to respond bymaking a saccade

(Figure S1) to the changed square to receive a reward. Perfor-

mance was 73% correct on two-item trials and 56% correct on

three-item trials, comparable to performance previously re-

ported in monkeys (Buschman et al., 2011). Using multiple acute
electrodes in lateral PFC (lPFC) and frontal eye field (FEF), we re-

corded LFPs and spikes from 321 electrodeswith isolatable neu-

rons, which were kept for LFP analysis. Of the isolatable units,

we analyzed those with at least four spikes per trial (n = 293).

Prediction 1: Gamma Oscillations Are Tied to Neural
Encoding of Information
The tested model predicts specific roles for gamma and beta

oscillations. Encoding or decoding a stimulus triggers a gamma
Neuron 90, 1–13, April 6, 2016 ª2016 Elsevier Inc. 3



Figure 3. Anatomical Location and Information on Gamma-Modu-

lated Sites

(A) The average information measured using PEV from all cells recorded from

gamma-modulated (red) or non-modulated (blue) sites at the time of stimulus

presentations (time 0 refers to the onset of the first stimulus). S1 and S2 refer to

samples 1 and 2.

(B) The layout of the grid used for inserting the electrodes for monkey M1 (left)

and M2 (right). Circles denote recording locations and color code describes

the across-session likelihood that an electrode at that particular site displayed

increased gamma power during stimulus presentations (gamma-modulated

site). See also Figures S4 and S5.
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oscillatory attractor state and suppresses a default beta oscilla-

tory state (Figure 1C). This was superficially supported by the

average time-frequency evolution for all electrodes (Figure 2B);

beta (20–35 Hz) power was suppressed and weak gamma

(45–100 Hz) power increases were observed during stimulus

presentations. These beta and gamma oscillations were induced

(not phase locked to stimuli, Figures S2A and S2B). By contrast,

stimulus presentation also evoked lower-frequency (3–10 Hz)

activity that was phase locked to stimulus and not present during

memory delays (Figures S2A and S2B).

Because of its posited role in gating encoding, gamma should

only occur where local neuron populations convey stimulus

information. Thus, the model predicts that, at sites where the

gamma state is not triggered, spiking is not informative. We first

tested this by determining whether gamma was present at some

recording sites and not others. Indeed, there was a dramatic

difference. The majority of sites (195/321, 61%) showed beta
4 Neuron 90, 1–13, April 6, 2016 ª2016 Elsevier Inc.
oscillations throughout the trial and no significant increase of

gamma in response to stimuli (Figure 2C, referred to as non-

modulated sites). However, for the other sites (126/321, 39%;

42.2% monkey M1 and 37.5% monkey M2), gamma power

significantly increased following stimulus presentations (Fig-

ure 2C, referred to as gamma-modulated sites). A comparison

revealed that the largest difference between the gamma-modu-

lated and non-modulated sites was between 45 and 100 Hz

(Figure S2C), indicating that gamma power changes indeed re-

flected oscillations and not the spectral consequences of spiking

(investigated in more detail below). In addition, modulated sites

showed a stronger beta suppression during stimulus presenta-

tions and stronger stimulus-locked 3–10 Hz power (Figure S2C).

The latter difference was evident in the evoked potentials (Fig-

ure S3), suggesting differences in the processing of bottom-up

inputs. Next we determined whether firing in gamma-modulated

sites selectively conveyed information about the stimulus.

First, we analyzed the spiking of all recorded neurons. To

quantify information they carried about stimuli, we estimated

the percentage explained variance (PEV; Olejnik and Algina,

2003; see Experimental Procedures), which measured for each

cell the proportion of variance in firing rate that could be ex-

plained by stimulus identity (color and location, see Experimental

Procedures). About one-quarter of the neurons (24.2%, 71 of

293; see Experimental Procedures for criteria) carried informa-

tion about the location of the square, its color, or both (Figure S4;

average PEV based on color and location combined for informa-

tive group was 0.063, PEV based on location only was 0.046).

Remarkably, all of these informative neurons (71/71) were re-

corded at the less common gamma-modulated sites (Fisher’s

exact test for contingency, p < 10�24). The more common

non-modulated sites produced spiking activity that did not

convey any significant information about stimuli. To further

demonstrate this, we recalculated the spectrograms separately

for the recording sites that contained any neuron whose spiking

conveyed stimulus information (Figure 2D, Population: infor-

mative cells) and those that did not (Figure 2D, Population: no

informative cells). This yielded virtually identical results to the

spectrograms sorted by the presence or absence of stimulus-

induced gamma power.

To illustrate this yet further, we plotted the average information

from spiking on gamma-modulated versus non-modulated sites

(Figure 3A). Neurons from the non-modulated sites had virtually

no average stimulus information. They only showed weak infor-

mation after the test stimulus when the animal made a saccade

to the target. By contrast, spiking from gamma-modulated sites

showed significant stimulus information starting from sample

stimulus onset and continuing throughout the trial (Figure 3A).

Thus, induced gamma oscillations and beta-band suppressions

at stimulus presentation were strongly co-localized with stimulus

information in spiking. This is consistent with the model predic-

tion that stimulus/encoding depends on triggering a gamma at-

tractor state (Figures 1A and 1B) that disrupts the default beta

state. If the local neurons do not carry stimulus information,

gamma is not triggered and that population stays in the default

beta state.

This difference between stimulus information from gamma-

modulated versus non-modulated sites was not simply due to



Figure 4. Oscillatory Gamma and Beta Bursts

(A) Example of spectrogram from a single two-item trial.

(B) Zoom-in on the raw LFP (black) around the time of the encircled gamma

and beta bursts seen in the top right spectrogram. Blue curve shows the LFP

filtered at 75 Hz (center of the encircled gamma burst) and white curve shows

LFP filtered at 37 Hz (center of the encircled beta burst.

(C) Estimated burst rate for two-item trials in gamma (light red) and beta (dark

red) frequency bands for gamma-modulated sites (both monkeys combined).

Burst rate is the time-dependent portion of trials exhibiting a burst at a given

time point.

(D) Gamma burst rate in three-item trials around the time of the presentations

of each item (S1–S3) and the first test item for the same electrodes as in (C).
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better quality recordings from the gamma-modulated sites. The

average number of isolatable neurons was not higher in the

gamma-modulated versus the non-modulated sites (1.41 versus

1.43, p = 0.81). The average spiking rate from gamma-modu-

lated sites was only slightly higher than that of non-modulated

sites (8.3 versus 6.5 spikes/s; Figure S5). But, to ensure that

the differences were not merely due to increased spiking, we

gradually removed the neurons with the highest spike rates

from gamma-modulated sites until the mean spike rate was

the same on the gamma-modulated and non-modulated sites

(removing 10%of themost active units was sufficient; Figure S5).

This did not change the average information (PEV across all

neurons and the entire trial) for the gamma-modulated sites

(0.031 versus 0.031, p = 0.87), and the information in non-modu-

lated sites remained significantly lower (mean PEV = 0.0006)

than in gamma-modulated sites. Similarly, taking 80% of the

most active neurons from non-modulated sites resulted in

equating average spiking rates between the two types of sites

(8.3 spikes/s), but the mean PEV nonetheless remained signifi-

cantly lower on the non-modulated sites (0.0008; not signifi-

cantly higher than in the original group, p = 0.91). Finally, the

gamma-modulated sites were clustered (Figure 3B) in the cortex.

As they were sampled with new electrodes each day, the differ-

ence between gamma-modulated and non-modulated sites

was not due to the electrodes. Instead, there seemed to be an

anatomical clustering of WM information where gamma-modu-

lated sites contained a mix of informative and non-informative

neurons, while non-modulated sites contained only non-infor-

mative neurons (as suggested by the model, compare recording

sites 2 and 3 in schematic Figure 1A of the model).

Prediction 2: Gamma and Beta Occur in Brief,
Narrow-Band Bursts
The model predicts that, on single trials, beta and gamma power

increases should occur in brief, irregular, bursts (Figure 1). Each

burst should be narrow band and well defined in frequency, but

widely scattered in frequency because it reflects a transient

attractor state where the exact frequency is set by the instan-

taneous level of excitation in the local microcircuit. The average

spectrograms in Figure 2 seem to suggest the opposite (broad-

band, long-lasting signals), but this was an artifact of averaging

across trials. Further, the model predicts that, as WM load

increases, the number of coding assemblies taking turn being

active will increase, leading to more gamma bursts per trial

(and consequently higher trial-averaged gamma power; Fig-

ure 1). Below we demonstrate that, as predicted, on individual

trials both gamma and beta oscillations occurred in brief bursts

that were narrow and variable in frequency, like high-power

bubbles against low tonic background activity. Examples from

a single trial are shown in Figures 4A (spectrogram) and 4B

(raw LFP).

To quantify this bubbling, we defined a gammaor beta burst as

an increase in power of two SDs above the mean spectral power
Inset displays the average size of the gamma burst rate modulation effects in

monkey M1 and M2 (significance at level ***p < 0.01; error bars denote the

SEM). See also Figures S6, S7, and S8.
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in that band, lasting at least three cycles (see Experimental

Procedures). The gamma bursting predominantly ranged from

45 to 100 Hz. Each burst on average lasted 67 ms (SD 19 ms)

and was narrow in frequency (on average power dropped to

50% relative to the power of the central frequency of the burst

within 9.5 Hz, SD 2.9 Hz, see Experimental Procedures). Beta

bursting occurred predominately in the 20–35 Hz range, each

burst on average lasting 130 ms (SD 37 ms) and also narrow in

frequency (mean 5.1, SD 1.7 Hz). To investigate the bursts’ rela-

tion to trial-averaged power, we calculated burst rate on gamma-

modulated sites (Experimental Procedures) by measuring the

across-trial density of bursts in each time point (Figure 4C).

Both the gamma and beta burst rates were indeed highly corre-

lated with the across-trial power (mean correlation over elec-

trodes: r = 0.93, SE = 0.01 for gamma and r = 0.91, SE = 0.01

for beta; for all correlations p < 10�8; Figure S7). This suggests

that the broad-band long-lasting increases in beta and gamma

power seen in the average spectrograms were due to gamma

and beta bursts of short duration and narrow frequency on a

trial-by-trial basis. We confirmed that a bubbling pattern of

gamma and beta bursts on single trials gradually turned into

smooth continuous broad-band pattern when averaged over

an increasing number of trials (Figure S6).

To test the prediction that gamma bursting increases with

WM load (Figure 1B), we studied trials with three-item presen-

tations focusing on the time of each sequential stimulus pre-

sentation and the first 300 ms of each following delay. Each

subsequent stimulus presentation (increase in load; Figure 2A)

seemed to result in higher gamma burst rates (Figure 4D). This

was tested by quantifying the burst rate over a 150-ms window

centered on the peak in average burst rate for each stimulus

presentation. Pairwise comparisons between all combinations

of stimulus load (i.e., 1 versus 2, 2 versus 3, 1 versus 3) demon-

strated significantly higher burst rates for higher loads (p <

10�8, Friedman test; pairwise post hoc comparisons with Bon-

ferroni correction at the overall significance a = 0.05; see inset

for statistics on each monkey separately). Importantly, as also

predicted (Figure 1), this was due to an increased number of

bursts (burst count during the presentation and delay com-

bined [600 ms] for each load condition progressively increased,

p < 10�12, testing procedure as above) and not due to load-

dependent changes in burst length (p > 0.31, Kruskal-Wallis

test).

The gamma bursting allowed us to study the relationship

between gamma bursts and spiking at a single-trial level. The

model predicts that gamma, but not beta, bursts should corre-

spond to states with higher spiking rates (Figure 1C). Indeed,

spike rates were significantly higher inside than outside gamma

bursts (p < 10�12, permutation test on the largest cluster-based

statistics; Figure S8A). There was no significant difference be-

tween spikes rates inside and outside of beta bursts (Figures

S8B and S8C; p = 0.98).

The relatively long duration and narrow frequency range of

individual bursts quantified above (see also Figure 4A) suggest

they are not simply spectral by-products of spiking. Spike-

shaped bleeding would have created gamma events with the

opposite profile: broad in frequency and even briefer (around

1 ms) (Ray and Maunsell, 2011). In addition, the gamma and
6 Neuron 90, 1–13, April 6, 2016 ª2016 Elsevier Inc.
beta bursts were visible in raw LFPs (Figure 4B). We further

tested whether the gamma oscillations corresponded to rhyth-

mic population activity rather than spike-shaped bleeding by

looking at spike-gamma burst interactions as above. Early

network models (Brunel and Wang, 2003) with the same pyrami-

dal-interneuron interaction as in the tested model (Figure 1C)

suggest that both gamma frequency and spike rates are

co-modulated by excitation. We therefore divided gamma into

two non-overlapping sub-bands (low: 40–65 Hz versus high:

70–100 Hz). As predicted, the spike rate modulation by gamma

bursts was higher in the high gamma than in the low gamma

band (p < 10�8, Wilcoxon signed-rank test). Thus, higher spike

rates are associated with the higher frequency gamma bursts.

This would not have been expected if gamma power was due

to spike-shaped bleeding, as spike rate then would have had

no effect on the spectral component.

Prediction 3: Beta and Gamma Underlie Different
Network States
The model further predicts that, because gamma and beta

bursting correspond to different states of the network (stimulus

coding versus default states, respectively), they should be

anti-correlated. The average spectrogram shown in Figure 2D

and the plots of burst rates for gamma-modulated sites (Fig-

ure 4C; Figure S7) suggest this. Indeed, most of the gamma-

modulated sites (112/126) showed a significant negative correla-

tion between gamma and beta power across the trial (p < 0.05;

r = �0.41, SE = 0.04). However, looking into beta (20–25 and

25–35 Hz) and gamma (45–60, 60–75, and 75–90 Hz) power

in small 50-ms time bins, we could not find evidence that power

in any beta sub-band correlated with power in any gamma sub-

band in the same trial and time bin. Thus, there was no apparent

instantaneous connection between the two frequencies on a

single-trial level.

Prediction 4: Gamma Bursts Are Not Periodic
Several studies (Palva et al., 2005; Axmacher et al., 2010) as well

as the model suggest that gamma power should be modulated

by slower frequency oscillations. The model explains this low-

frequency modulation, not by periodic occurrence of gamma

bursts, but by consistency in the duration of the gamma burst

per se. To examine this, we analyzed the spectral content of

the gamma power envelope. This showed a pronounced peak

at 8–10 Hz, which was stronger for gamma-modulated sites

and during elevations in gamma burst rate (Figure 5A, compare

with Figure 4C). As predicted, this peak was related to the life-

time of gamma bursts rather than their periodic occurrence, as

evidenced by the burst auto-correlogram (Figure 5B; Experi-

mental Procedures), which only had a central peak and no side

peaks (as would have been expected from a periodic occur-

rence). In addition, the coefficient of variance (CV2) for inter-burst

intervals was close to 1 (mean CV2 for delay = 0.997, SD 0.028;

mean CV2 full trial = 0.993, SD 0.018; see Experimental Proce-

dures), indicating a highly variable generation and not periodic

appearance. The cross-correlograms also showed a central

(albeit much smaller, compare scales) peak (Figure 5C), demon-

strating a weak spatial coordination in the timing of bursts across

sites.



Figure 5. Slow Modulation of Gamma Power

(A) The difference between spectrograms of the envelopes of the gamma-band (45–100 Hz) oscillations in gamma-modulated versus non-modulated sites is

shown.

(B) Auto-correlogram of gamma (45–100 Hz) bursts for gamma-modulated sites during the delay period is shown.

(C) Cross-correlogram of gamma bursts calculated between all simultaneously recorded gamma-modulated sites. S1 and S2 refer to samples 1 and 2 and T1 to

the first test item.
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Prediction 5: Gamma Bursts Are Associated with
Stimulus Decoding
The model predicts that gamma bursts not only encode stimuli

but also the bursts replay (and beta pauses) when information

is read out of WM as spiking. This was supported by our obser-

vation that gamma burst rate increased late in the memory delay

in two-item (Figure 2C, gamma-modulated sites; Figure 4C) and

three-item trials (Figure S7C), accompanied by a drop in beta

bursting. This could reflect a replay of stored attractor memories

(Lundqvist et al., 2011; Figure 1B) in anticipation of the need to

compare them to the test item. This increase in gamma bursting

was not related to the anticipation of just any stimulus. Presenta-

tions of to-be-encoded sample stimuli at the start of the trial were

predictable, but there was no anticipatory increase in gamma

bursting (Figure 4D).

To investigate this further, we examined the gamma power

evolution on the gamma-modulated sites (with informative

spikes; Figure 3A, red lines) versus non-modulated sites (with

non-informative spikes). We used spectral band power rather

than a burst rate, as the latter measure was inherently normalized

across recording sites (Experimental Procedures). The results

are illustrated in Figure 6A for both two-item (left panel) and

three-item (right panel) trials. In both cases, the gamma power

from the gamma-modulated sites (red lines) increased in antici-

pation of the end of the delay. By contrast, non-modulated sites

(without informative spikes, Figure 3A, blue lines) did not show

any anticipatory increase. At these sites, the only increase in

gamma power occurred at the end of the trial when the animals

made their choice, likely due to the saccade. This was also the

only period when neurons from the non-modulated sites showed

elevated spiking (Figure S5) and carried stimulus information

(Figure 3A).

In contrast to gamma, beta-band power in two-item trials

dropped at the end of the delay (prior to T1 relative to early delay

in Figure 6B), regardless of the site type (gamma-modulated or

non-modulated site, p < 10�18 for both, Wilcoxon signed-rank

test for the average band power between the first and second
halves of the delay). Toward the end of delay and during test

stimulus, average beta power was not different between

gamma-modulated and non-modulated sites (p = 0.51,Wilcoxon

signed-rank test). This was in contrast to sample presentation

when beta was globally suppressed, but more strongly in

gamma-modulated sites (Figure 6B; Figure S2; especially rela-

tive to the pre-stimulus levels).

To further investigate the role of gamma in encoding and de-

coding, we examined neurons that carried information about

the sample stimuli. There were two subgroups, selected by

when in the trial their peak firing rates occurred. For one group

of neurons, the peak in firing rates took place during stimulus

presentation (the encoding group; Figure 7A, left panel). The

other group of neurons showed a peak of spiking during the

memory delay (the maintenance group; Figure 7A, right panel).

Importantly, the encoding neurons were suppressed at the onset

of delay but ramped up activity during the second half of the

delay, a property for which they were not selected. Trial-aver-

aged activity of the encoding group, therefore, exhibited a similar

trend to the gamma burst rate (Figure 7A, left, red line, gamma-

modulated sites). Activity of the maintenance group, by contrast,

showed a different temporal profile than the average gamma

burst rate (Figure 7A, right, red line). Thus, one group of neurons

fired during encoding and decoding epochs, closely following

the gamma burst rate, while the other fired when the information

needed to be maintained but not accessed. As expected, the

time course of neural information in these two groups (PEV,

see Experimental Procedures) was strongly correlated with the

spiking rate (Figure 7B). Thus, late in the delay, gamma bursting

increased (p < 10�14) as did spike rate (p < 10�3) and information

(PEV, p < 10�3) in the encoding/decoding group (first 300 ms of

the delay versus last 600 ms, Wilcoxon signed-rank test).

It was possible that the increases in gamma bursting and

information in the encoding neurons could reflect anticipation

of encoding of the test stimulus rather than decoding information

fromWMper se. To test this, we needed a task in which themon-

keys could anticipate the end of a memory delay (and thus the
Neuron 90, 1–13, April 6, 2016 ª2016 Elsevier Inc. 7



Figure 6. Power in Gamma-Modulated and

Non-modulated Sites

(A) Gamma band power in two- (left) and three-

(right) item trials averaged for gamma-modulated

(red) and non-modulated (blue) sites.

(B) Same as (A), but for beta-band power. Shaded

regions represent SEs.

Please cite this article in press as: Lundqvist et al., Gamma and Beta Bursts Underlie Working Memory, Neuron (2016), http://dx.doi.org/10.1016/
j.neuron.2016.02.028
need to decode) without anticipation of a (test) stimulus. To this

end, we trained two newmonkeys on a spatial delayed-response

task (Funahashi et al., 1989; Pesaran et al., 2002; Goldman-

Rakic, 1995). The monkeys had to fixate at a dot in the middle

of the screenwhile a target location was flashed (Figure 8A). After

a delay period, signaled by the removal of the fixation dot, the an-

imals were to saccade to the location of the previously flashed

target. While this task also involved short-term memory mainte-

nance, it was markedly different from the main task. It was less

complex and more related to the maintenance of a motor plan

rather than the maintenance of two or more stimuli. Critically,

at the end of delay, there was no new stimulus as in our original

WM task, but instead the cue to use theWM information was the

disappearance of the fixation dot. These differences allowed us

to test the generality of the anticipatory effects found in the main

task.

To more directly verify the hypothesis that gamma bursts are

induced as the animal anticipates the need to decode informa-

tion from WM, we used two different lengths of memory delay.

In six out of seven trials the delay was 750 ms while in one out

of seven trials the delay was 1,500 ms. This setup was inspired

by the observation that gamma bursts seemed to occur earlier

in two-item trials, which contained a longer delay interval and

were also less common than the three-item trials. We predicted

increased gamma and reduced beta burst rates at the end of the

delays and that these effects should be particularly strong in the

second half of the unexpectedly long delays. This is indeed what

we found (Figure 8B; results pooled across all electrodes in lPFC

and FEF of both monkeys). The increase in gamma burst rate
8 Neuron 90, 1–13, April 6, 2016 ª2016 Elsevier Inc.
toward the end of the 750-ms delay

was maintained throughout the entire

second half of the 1,500-ms delay

(1,100–1,850 ms in Figure 8B), and it

was accompanied by a decrease in beta

burst rate.

DISCUSSION

Model predictions were borne out by trial-

by-trial analysis of PFC activity during a

multi-item WM task. There was an inter-

play between spiking activity and induced

oscillations in two main frequency bands,

beta (20–35 Hz) and gamma (45–100 Hz).

Rather than an overall change in the ac-

tivity state, there were discrete bursts of

beta and gamma LFP oscillations, each

brief in duration and narrow in frequency

range, like small bubbles of oscillatory
events. It was only by averaging across trials and recording sites

that we observed the broad-band, smoothly varying oscillatory

power that has been reported previously (Sederberg et al.,

2003; Howard et al., 2003; Roux et al., 2012; Roux and Uhlhaas,

2014; Honkanen et al., 2015; Kornblith et al., 2015). The distinc-

tion that the gamma oscillations were narrow band on a single-

trial level is of interest, as narrow-band gamma in visual cortex

is related to sensory processing (Gray and Singer, 1989; Ray

and Maunsell, 2011; Lachaux et al., 2005; Fisch et al., 2009)

and has been shown to occur in bursts (Tallon-Baudry and Ber-

trand, 1999; Kucewicz et al., 2014).

Previous studies reported various different oscillatory corre-

lates of WM (Tallon-Baudry and Bertrand, 1999; Howard et al.,

2003; Palva et al., 2005; Jensen and Tesche, 2002; Kornblith

et al., 2015). Here we examined spiking and LFPs in tandem.

This revealed a close link between informative spiking and

gamma bursts. Spiking that conveyed stimulus information

was only found at the minority of recording sites that showed

increased gamma bursts to stimuli. Given their length (average

67 ms) and narrow within-burst frequency range, the gamma

bursts were not the result of spike-shaped bleeding into the

high-frequency spectral content, but instead they reflected true

oscillatory events (Nir et al., 2007). The gamma bursts and

related spiking were induced during encoding and then sponta-

neously re-appeared throughout the trial, particularly in antici-

pation of decoding of WM content.

These results are consistent with the tested multi-item WM

model (Figure 1). In this model, a brief gamma burst accom-

panies the coordinated activation of an ensemble coding a



Figure 7. Information and Firing Rates in

Two-Item Trials

(A) The average normalized firing rates of all infor-

mative early (encoding/decoding, left, n = 50) and

late (maintenance, right, n = 21) responding cells.

The red curve is the normalized gamma-band

(55–90 Hz) burst rate as a reference.

(B) The average PEV based on first (dark) and

second (light) stimuli for informative early (encod-

ing/decoding, left) and late (maintenance, right)

responding cells. Shaded areas represent SEs.
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specific memory item. In particular, the gamma bursts are

manifestations of attractor states that correspond to different

memory items. Due to the brief lifetime and synaptic foundation

of these attractor states, information about distinct items is

not retrieved simultaneously, preventing unwanted interference

when more than one object is stored (Figure 1). Our findings

thus provide support for the discrete coding and periodic replay

hypothesis (Sandberg et al., 2003; Lundqvist et al., 2011; Fuen-

temilla et al., 2010). In this view, WM information is only present

in brief bursts of spiking and maintained in synaptic changes

between such events (Sandberg et al., 2003; Mongillo et al.,

2008; Lundqvist et al., 2011, 2012; Stokes, 2015).

The tested model further predicted that increasing WM load

should result in a greater rate, but not length, of gamma bursts

(Lundqvist et al., 2011) as more items take turn being active.

This prediction is opposite to the main conjecture of a related

model (Lisman and Idiart, 1995), where the duration of bursts,

but not their number, should increase with load. Both sets of

predictions could potentially explain reported increases in mid-

range gamma-band power with stimulus load (Howard et al.,

2003; Roux et al., 2012; Honkanen et al., 2015; Kornblith et al.,

2015). These earlier reports displayed broad-band and relatively

long-lasting effects, but our observations suggest that they were

likely to be the result of trial averaging. Our trial-by-trial analysis

revealed that increasedmemory loadwas linked to the increased

rate, but not length, of brief narrow-band gamma bursts. The

consistent lifetime of bursts also accounted for the slow modu-

lation of average gamma-band power at 8–10 Hz. It was not a

continuous periodic modulation, but rather the result of irregular

occurrences of bursts of stereotyped length, as predicted by the
Neuron 9
model. There was no evidence for low-

frequency oscillations during the memory

delay. This does not preclude a role for

slower oscillations, especially in other

brain areas (Jensen and Tesche, 2002;

Palva et al., 2005; Axmacher et al., 2010;

Watrous et al., 2013).

We found that the heterogeneous

population of spiking neurons carrying

stimulus information could be reduced

to two principal populations with different

relationships to oscillatory dynamics. One

population was mainly active at stimulus

encoding and decoding. Its spiking ac-

tivity profile closely followed the gamma
burst rate recorded at the gamma-modulated sites with informa-

tive spiking. A second population of informative spiking neurons

were active mainly during memory delays when instead the

average beta burst rate was higher. Thus, different modes of

WM could be reflected by a shift in the balance of beta and

gamma burst rates. Activation or suppression of gamma

bursting (which was anti-correlated with beta bursting) could

activate or suppress spiking of encoding/decoding neurons

and, thus, gate access to WM or protect WM from interference

from new sensory inputs.

These gamma and beta dynamics may play similar roles in

other behaviors and other cortical areas. We observed the

same relationship between gamma and beta (and encoding/de-

coding versus maintenance) in a simpler WM task that involved

planning a delayed saccade (Funahashi et al., 1989) and, hence,

a motor plan. This is consistent with observations of increased

gamma power in lateral intraparietal cortex (LIP) in monkeys

during the encoding and decoding epochs of a delayed saccade

task (Pesaran et al., 2002). Fast gamma-like oscillations also

appear just prior to the onset of movements in M1 (Donoghue

et al., 1998). Gamma oscillations often have been associated

with stimulus processing (Fries, 2009) and visual attention in

sensory cortex (Gregoriou et al., 2009). Further, general beta

power suppression, together with specific patterns of increased

gammapower (Lachaux et al., 2005; Fisch et al., 2009) or gamma

bursting (Tallon-Baudry and Bertrand, 1999; Kucewicz et al.,

2014), has been tied to object and category recognition. Indeed,

the WM model tested here is an adaptation of a perceptual

model (Lundqvist et al., 2006). In that model, partial and noisy in-

puts activate an internal time-limited attractor state representing
0, 1–13, April 6, 2016 ª2016 Elsevier Inc. 9



Figure 8. Bursts in a Delayed Saccade Task

(A) Schematic of the task. The monkeys were to maintain fixation until the

fixation dot disappeared and then saccade to the earlier flashed target

location.

(B) Burst rate in gamma (light) and beta (dark) frequency ranges averaged

across monkeys and areas (FEF and PFC). Time 0 corresponds to the onset of

the sample presentation. Displayed is the subset of trials (1/7) where the delay

time was doubled (1,500 ms) relative to the standard delay of 750 ms (marked

with dashed line 1,100ms into trial). Shaded areas (hardly visible) represent the

SE (n = 124).
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the likely external stimulus. These non-linear activations are

coupled with induced, stimulus-specific patterns of gamma

and suppressed beta power (Lundqvist et al., 2010). It is the

addition of synaptic potentiation (Wang et al., 2006) to this

network that makes it capable of storing and replaying stim-

ulus-induced attractor states and, thus, useful for WM (Mongillo

et al., 2008; Lundqvist et al., 2011). Therefore, the beta and

gamma dynamics observed here seem to be a reoccurring

theme, reflecting similar mechanisms that have been adapted

across the cortex.

EXPERIMENTAL PROCEDURES

Experimental Setup

Two monkeys (1 Macaca mullata [M1] and 1 Macaca fascicularis [M2], main-

tained in accordance with the National Institutes of Health guidelines and

the policies of the Massachusetts Institute of Technology Committee for Ani-

mal Care) were trained on a serial WM task. To obtain a liquid reward (apple

juice), monkeys had to memorize a series of two or three colored squares.

Each side of the square was one degree visual angle (DVA) in length and

placed either 4 or 6 (for horizontal squares only) DVA lateral of the central

fixation, either at the horizontal meridian or 75� above or below the meri-

dian. Stimuli were only shown on the visual hemifield contralateral to the

recording site. All behavioral procedures were controlled using MonkeyLogic,
10 Neuron 90, 1–13, April 6, 2016 ª2016 Elsevier Inc.
a MATLAB-based software tool for control of behavioral experiments (Asaad

and Eskandar, 2008) interfacing through digital IO cards (NI-PCI6221, National

Instruments). Eye movements were controlled using a video-based tracking

system (Eyelink 1000, SR Research).

Data Collection

For each recording, a new set of acute electrode pairs (tungsten, epoxy-

coated, FHC) was lowered through a grid (19-mm diameter, custom-designed

grid and microdrives) that was always oriented in the same direction. A total of

18 (M1) and 20 (M2) prefrontal electrodes were recorded from simultaneously

on each session (14 sessions for M1 and 16 session for M2), but only the ones

containing isolatable units were kept for further analysis. The recordings were

performed on a Blackrock Cerebus system and Plexon unity-gain headstages.

The LFPs were recorded at a sampling rate of 30 kHz.

Signal Processing

We first removed apparent noise sources from the signal. In particular, a notch

filter was applied to remove 60-Hz line noise with constant phase across a

session. In addition, we removed periodic deflections seen in the evoked

potentials (every 47 ms, lasting 1 ms, on a subset of electrodes, phase locked

to stimulus onset). The signal was filtered and downsampled to 1 kHz. We

applied and compared three different methods for time-dependent spectral

estimation of the signal: Morlet wavelet analysis (Tallon-Baudry et al., 1996)

as well as multi-taper analysis (with a family of orthogonal tapers produced

by Slepian functions; Slepian, 1978; Thomson, 1982; Jarvis and Mitra, 2001)

and band-pass filtering techniques (Butterworth filter of order 4–6 applied in

the forward and reverse directions to obtain the effect of zero-phase filtering,

followed by Hilbert transform to extract analytic representation of the signals).

They all yielded very similar results in terms of qualitative time-frequency

content. They also led to comparable burst extraction outcomes. For all the

presented spectrograms (except Figures S6 and S2 in which a large frequency

range was scanned and Morlet wavelets used; number of waves = 6, number

of octaves = 6, and a step size of 0.05 octaves) and for all burst extraction, the

multi-taper approach was adopted with frequency-dependent window lengths

corresponding to six to eight oscillatory cycles and frequency smoothing

corresponding to 0.2–0.3 of the central frequency, f0, i.e., f0 ± 0.2f0, where

f0 were sampled with the resolution of 1 Hz (this configuration implies that

two to three tapers were used). The spectrograms were estimated with the

temporal resolution of 1 ms.

Typically we present total power of raw LFPs (after removal of noise) without

subtracting any baseline or estimated evoked content. Evoked (Figure S2B)

power, in contrast, was calculated by averaging the LFPs across trials for

each electrode and estimating power on the averaged signal.

Selection of Gamma-Modulated Sites

Spectral power in correct trials was estimated for each electrode. Electrodes

with obvious artifacts (n = 14) were removed. These artifacts manifested them-

selves as persistent narrow-band patterns within either 6–8 or 20–22 Hz (n = 6)

and apparent bleeding of spikes into the upper frequency ranges of the

spectral power estimations (above 50 Hz, n = 8 in M2). Each of the remaining

321 electrodes was categorized either as a so-called gamma-modulated or

non-modulated site. Gamma-modulated sites were defined as those that dis-

played a significant increase in gamma-band power during all presentations

for either two- or three-item trials (comparing the last 200 ms of the 300-ms

presentation window to the 200-ms interval preceding the presentation;

Wilcoxon signed-rank test at a = 0.05).

Burst Extraction

In the first step of the oscillatory burst identification, a temporal profile of

the LFP spectral content within a frequency band of interest was estimated.

We used two alternative methods of spectral quantification (see above). We

either narrow-band-filtered LFP trials and extracted the analytic amplitudes

(envelope) or we used single-trial spectrograms, obtained with the multi-taper

approach, to calculate smooth estimates of time-varying band power (all pre-

sented results were obtained with the multi-taper approach; the results for the

two methods were very similar). Next we defined oscillatory bursts as intervals

during individual trials when the respective measure of instantaneous spectral
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power exceeded the threshold set as two SDs above the trial mean value for

that particular frequency, andwith the duration of at least three cycles. Further,

we extracted the time-frequency representation of the signal in the spectro-

temporal neighborhood of each burst using the multi-taper approach, and

we averaged the power density across the local spectral range to obtain

its local temporal profile. We resorted to fitting two-dimensional Gaussian

function to the local time-frequency map to specify the aforementioned neigh-

borhood. Finally, we defined the burst length as a time subinterval where

the average instantaneous power was higher than half of the local maximum

(half-power point).

Having the burst intervals extracted for the beta band (20–35 Hz) and three

gamma sub-band oscillations (40–65, 55–90, and 70–100 Hz) from each trial,

we defined a trial-average measure, a so-called burst rate for each spectral

band. This quantity corresponds to the chance of a burst occurrence on an in-

dividual electrode at a particular time in the trial (a proportion of trials where a

given electrode displays burst-like oscillatory dynamics around the time point

of interest sliding over the trial length).

To estimate how narrow in frequency the burst events were, we defined their

frequency span analogously as their temporal length, i.e., in terms of the half-

power point (3-dB drop). Hence, similarly as in the burst length estimation, we

averaged the time-frequency representation of the signal in the local neighbor-

hood of the burst, this time along the temporal dimension, andwe identified the

frequency range where this average spectral power component did not fall

below 50% of the local maximum (epicenter of the burst’s power).

Burst Auto-correlation and Cross-Correlation

To describe the temporal characteristics of the burst occurrence, we esti-

mated the auto-correlation and cross-correlation functions. We first extracted

a binary string for each electrode in each trial where only the middle time

point of every burst was set to 1. Then for all electrodes we evaluated the

trial-average auto-correlation using this binary representation. Analogously,

we averaged cross-correlation between the binary representations of burst

occurrences at all pairs of electrodes. In the case of both auto- and cross-

correlations, the estimates were corrected for the lag-dependent size of over-

lap between the two binary strings, i.e., raw correlations were scaled by the

length of the strings minus the size of lag.

We also estimated the CV2 for inter-burst intervals (Holt et al., 1996) using

the binary string representation of burst occurrences at each electrode ac-

cording to the following formula:

CV2 =
1

n� 1

Xn�1

i =1

2jIi � Ii + 1 j
Ii + Ii + 1

where Ii is the time interval between the ith consecutive pair of burst events

(middle time points) (i = 1, .., n) across the concatenated binary strings of all

trials.

Burst-Spike Interactions

To calculate the trial-average firing rates within and outside bursts, the instan-

taneous firing rateswere first estimated for each unit by convolving spike trains

with a Gaussian kernel (20 ms wide). Then, with a sliding window, we averaged

normalized firing rates across trials where the matching electrode was either

engaged in an oscillatory burst (within-burst firing) or it was not (outside-burst

firing). The aforementioned normalization of firing rates was performed inde-

pendently for each trial and unit by calculating the relative firing rate change

with respect to the trial mean value (within-trial modulation).

Selection of Informative Cells

The bias-corrected PEV (Olejnik and Algina, 2003; Buschman et al., 2011) was

estimated from average firing rates in 50-ms bins across trials with different

stimulus-dependent conditions. We performed two-way ANOVA where trials

were either grouped by the location (Figure S4 only) or combination of location

and color of the presented items. All correct trials were used, as the groups

were well balanced each session. The bias correction was used as it avoids

the problem of non-zero mean PEV (u2) for small sample sizes.

u2 =
SSBetween groups � df 3MSE

SSTotal +MSE
;

where MSE is the mean squared error, df is the degrees of freedom, SSTotal is

the total variance, and SSBetween groups is the variance between groups. As a

result, (bias-corrected) PEV allowed for the quantification of information

carried by the modulation of firing rates of individual units accounting for the

location or combination of color and position of the presented stimulus object.

A unit was defined as informative if its PEV for the combination of color and

location exceeded the threshold of 0.05 in two consecutive time bins anywhere

in the trial after the relevant stimulus had been presented. Normalization of

firing rates for each cell amounted to the scaling by its total intra- (across

time) and inter-trial average firing rate.

Statistical Methods

The majority of tests performed in this study were nonparametric due to

insufficient evidence for model data distributions. To address the multi-com-

parisons problem, we employed Kruskal-Wallis, Friedman’s, and Wilcoxon’s

signed-rank tests where appropriate. In addition, for the comparison between

temporal profiles of the normalized firing rates within versus outside oscillatory

bursts, we resorted to a permutation test on the largest cluster-based statis-

tics (Maris and Oostenveld, 2007), originally proposed to increase the test

sensitivity based on the known properties of the data (here being temporal

dependency). Finally, some attention should be given to the way we report

correlations between the measures of time-varying spectral band content

and burst rate statistics. The correlation analyseswere performed on individual

electrodes and only the summary statistics (mean and SE) for the electrode-

wise significant effects (p < 0.01) are presented.

Additional Analysis

We also performed spike-field coupling, cross-frequency coupling, and

behavioral analyses, which were omitted from the main paper. The motivation

andmore details are described in the Supplemental Experimental Procedures.
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and eight figures and can be found with this article online at http://dx.doi.
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