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Introduction—The Importance of Cognitive Control

A hallmark of cognitive control is its flexibility. Every situation we experience is essentially 
unique, and yet we are able to act appropriately in different contexts, integrating the current 
environmental contingencies, our internal goals, and the goals of those around us. Imagine 
sitting down to play a new card game—you are able to integrate the rules; form an initial, 
possibly rudimentary, strategy; and then play your hand appropriately.

On top of this incredible ability to coordinate complex rule‐guided goal‐directed behaviour, 
we can quickly change our behaviour in response to changes in the world around us or our 
own desires. Behavioural studies suggest this can happen extremely quickly—within a couple 
of hundred milliseconds (for a review, see Sakai, 2008). For example, you will likely adapt 
your strategy as you play the game, learn its nuances, and respond to the strategies of 
others—perhaps even before the next hand is played.

What are the neural mechanisms that support this flexibility? In this chapter, we suggest 
that cognitive flexibility depends on the capacity of the prefrontal cortex (PFC) to dynami-
cally encode the task‐relevant information. We begin by reviewing the evidence that the 
l ateral PFC (lPFC) plays a particularly important role in flexible cognitive control. Next, we 
review the evidence for highly dynamic representations in lPFC. Finally, we consider how 
these r epresentations can be used to establish task‐relevant networks throughout the brain.

Cognitive Flexibility

Cognitive flexibility is a defining feature of animal intelligence. This ability has developed 
throughout evolution, reaching its pinnacle in humans. The size of the PFC has grown in 
parallel along the phylogenetic tree, from non‐primates (e.g., <4% of the total cortical volume 
in cats) to primates (e.g., ~10% in macaques) to apes (e.g., ~17% in chimpanzees) to its apex 
in humans (~30%; for review, see Fuster, 2002). This evolutionary trajectory already suggests 
that the PFC plays a central role in cognitive flexibility, a hypothesis that is s upported by 
the impact of damage to the lPFC on behaviour (see Chapter 29 by Fellows in this volume).
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Systematic analysis of lesion extents and behavioural impairments demonstrate that the 
PFC is critically important for planning and executing sequences of actions, particularly when 
individuals are faced with abstract or open‐ended tasks (Shallice & Burgess, 1991). A partic-
ularly powerful paradigm for investigating cognitive flexibility has been the Wisconsin 
Card‐Sorting Task (WCST). The WCST requires individuals to apply a sorting rule to a 
m ultidimensional stimulus and then, after an unpredictable amount of time, flexibly switch to 
another rule. Patients with lesions involving the frontal lobe often display profound diffi-
culties in performing the WCST, particularly at the point where they should switch between 
different sorting rules on the basis of negative feedback (Barcelo & Knight, 2002; causing 
perseverative errors, Milner, 1963). Subsequently, lesion studies in non‐human primates 
has  confirmed the importance of the PFC in performing a WCST analogue and further 
p arcellated cognitive functions to different subregions in the PFC (Buckley et  al., 2009). 
Such experiments are consistent with the view that the lPFC is particularly important for 
representing the current task set (Miller & Cohen, 2001).

Neurophysiological studies of the lPFC demonstrate that neurons have a set of properties 
that may make them uniquely well suited to acting as a cognitive controller. First, individual 
neurons in the lPFC are known to represent the contents of working memory (WM; 
Funahashi, Bruce, & Goldman‐Rakic, 1989; Fuster & Alexander, 1971; Miller, Erickson, & 
Desimone, 1996). Although WM is distributed across many different brain regions, coding 
in the lPFC is more resistant to distraction than visual brain areas (Miller et al., 1996). More 
recent work also suggests that regions in the PFC have the longest time constants (Murray 
et al., 2014). In other words, lPFC neurons integrate information over long periods of time 
(Fuster, 2001). This is a prerequisite for intelligent behaviour—one must respond based on 
the situation and goals, even if these constraints are not immediately obvious. Second, neu-
rons in the lPFC do not represent just any information from the environment; instead, it 
prioritises those stimuli that are relevant to the current task (Miller et  al., 1996; Rainer, 
Asaad, & Miller, 1998). Such filtering ensures that only task‐relevant information is used to 
guide behaviour. Third, neurons in the lPFC are able to represent a great diversity of such 
task‐relevant material (Duncan & Miller, 2002). Importantly, this includes information about 
the current task (Wallis, Anderson, & Miller, 2001; White & Wise, 1999), recent events held 
in WM, and predictions of future events (Rainer, Rao, & Miller, 1999). In other words, no 
matter what the task, lPFC neurons are able to represent the relevant information (including 
what the task is), hold it ‘in mind’, and then use this task‐relevant information to plan future 
action and guide current behaviour.

Flexible Representations in the PFC

To gain more precise insights into the computational role of the PFC, we need to look more 
closely at the neurophysiological principles of coding in frontal networks. As noted above, 
single‐cell recordings in the monkey PFC provide extensive evidence that activity encodes the 
behavioural parameters that are currently relevant. However, it is implausible that the PFC is 
hardwired to perform all of these functions (Duncan, 2010). Indeed, in a typical experiment, 
about 30% of neurons represent any given task variable (Duncan & Miller, 2002), implying 
that the PFC is sufficiently flexible to allow task‐relevant information to effectively dominate 
the available coding space in the PFC.

Duncan and Miller (2002) propose that PFC neurons represent information in a highly 
dynamic manner, adapting rapidly to the current task. According to the principle of adaptive 
coding, the PFC constitutes a flexible pool of neural resources that can be recruited ‘on the fly’ 
to represent whatever information is currently most relevant for achieving behavioural goals.
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Real‐Time Flexibility

Multivariate analysis tools allow us to characterise population‐level neural dynamics that 
underpin cognitive flexibility. Applied to the PFC, these analytical approaches clearly show 
that neural coding is not fixed, but depends on the exact context of the current task (Meyers, 
Freedman, Kreiman, Miller, & Poggio, 2008; Sigala, Kusunoki, Nimmo‐Smith, Gaffan, & 
Duncan, 2008; Stokes et al., 2013). For example, we previously observed that population 
coding adapts according to a flexibly defined behavioural context. In Stokes et al., monkeys 
were trained to perform a simple stimulus–stimulus association task. At the beginning of 
each trial, the animal was given a ‘cue’ stimulus that would indicate the current context. 
This context determined which stimulus in an upcoming stream of stimuli would be the 
current ‘target’, to which they must respond to receive a reward. Notably, recording neu-
rons in the lPFC, we found the population response to a choice stimulus (target vs. non‐
target) critically depends on the behavioural context (Figure  13.1a). In context A, 
the response to stimulus ‘A’ followed a trajectory towards the ‘go’ activity state, whereas 
the response to stimuli ‘B’ or ‘C’ followed a different path to the ‘no‐go’ activity state 
(Figure 13.1b, upper panel). Correspondingly, in context B/C, stimulus ‘B’/’C’ followed 
the trajectory towards the ‘go’ state, whereas the response to stimuli ‘A’ or ‘C’/’B’ f ollowed 
respective path to ‘no‐go’ states. This dynamic mapping can be rephrased as a temporary 
shift in the decision circuit for flexible accumulation of task‐relevant information 
(see  Figure  13.1b, lower panel). How is this dynamic shift in coding established and 
m aintained in the lPFC?
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Figure 13.1 Context‐dependent population coding in the prefrontal cortex. a. During WM‐
guided behaviour, population‐level activity states quickly evolve from representing the physical prop-
erties of the presented stimuli (at 125 ms; stimuli are coloured coded) to the decision‐relevant coding 
from ~150 ms (i.e., target vs. non‐target; from Stokes et al. [2013], Open Access). b. This process can 
be schematised as a context‐dependent path through the activity‐state space. A functional shift in the 
response profile of the network effectively maps stimulus‐specific activity states to the context‐relevant 
position in the state space (upper panel; from Stokes et al., 2013). This flexible mapping could be 
framed as a context‐dependent decision process. In the lower panel, the results from panel A are replot-
ted as the accumulation of evidence for the ‘go’ or ‘no‐go’ response as a function of the current rules 
(i.e., if context 1, then the evidence for stimulus 1 supports a ‘go’ response, but stimuli 2 and 3 provide 
counterevidence; upper panel). Source: Adapted from Stokes 2013. Reproduced with permission of 
Elsevier.
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WM States for Guiding Behaviour

WM provides a temporary but stable platform for flexible, context‐dependent processing. 
Early neurophysiological recordings in the lPFC suggested that task‐relevant information 
is maintained via persistent delay activity (e.g., Fuster & Alexander, 1971). Tonic activity 
states representing task‐relevant parameters could, in principle, mix with new input for 
context‐dependent processing (Mante, Sussillo, Shenoy, & Newsome, 2013). However, 
accumulating evidence suggests that the relationship between delay activity and WM main-
tenance is more complex. For example, content‐specific delay activity has been observed 
prior to learning a specific WM task, and surprisingly, even reduced as the animals mastered 
the WM task (Qi, Meyer, Stanford, & Constantinidis, 2011). Even within a single trial, 
WM‐specific activity seems to wax and wane during the delay period, depending on the 
current focus of attention (reviewed in Stokes, 2015). For example, when the duration of 
the maintenance period is fixed from trial to trial, robust delay activity may only emerge 
late during the delay period (Barak, Tsodyks, & Romo, 2010; Watanabe & Funahashi, 
2007; Figure 13.2a). So‐called ‘ramp‐up’ activity implies that delay activity could optimise 
behaviour by preparing for the processing demands of the memory probe (e.g., temporal 
orienting of attention [Nobre, Correa, & Coull, 2007]). However, the relatively silent 
moments between encoding and response preparation also suggests that the continuity of 
vigorous delay activity is not always necessary for the continuity of the mental representa-
tion (Barak et al., 2010).
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Figure 13.2 Delay activity is modulated by current task relevance. a. Neurophysiological recordings 
from the PFC during the delay period of a memory‐guided saccade task reveal content‐specific activity 
(location‐specific activity is shown in black, and population mean activity is shown in grey for reference). 
However, content‐specific delay activity also varies with the current task relevance of the memory item, 
resulting in a ‘ramp up’ in anticipation of the response (Source: Adapted from Watanabe 2007. 
Reproduced with permission of Oxford University Press). b. In a more recent dual‐task experiment, an 
attention task partially overlaid the standard MGS design. Content‐specific activity was effectively abol-
ished by the dual task during the memory delay (red trace: from −1000 to onset of the attention target; 
black trace: permuted distribution). Critically, location‐specific information was ‘reactivated’ at the end 
of the dual task (red trace, after the onset of the attention target), presumably reflecting a shift in task 
focus to the MGS (Source: Adapted from Watanabe  2014. Reproduced with permission of Nature 
Publishing Group). Such evidence suggests that delay activity reflects the task relevance of memoranda. 
Gaps in content‐specific activity further suggest that WM could be maintained in an ‘activity‐silent’ 
neural state.
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Recent electrophysiological studies provide specific evidence that suggests persistent delay 
activity is not strictly necessary for accurate WM‐guided behaviour. Warden and Miller (2007) 
trained monkeys to perform a two‐item WM task: The animals were presented two stimuli in 
sequence, and then, after a memory delay, they were asked to report the identity and order of 
the remembered stimuli. Recordings in the lPFC demonstrated that neurons encoding the 
identity of the first stimulus in the sequence were suppressed during the presentation of the 
second stimulus. After the second stimulus, memory‐specific delay activity for the first 
s timulus was ‘reawakened’, presumably in time for WM‐guided behaviour. This was true, 
even when accounting for the high dimensionality of the representations (Rigotti et  al., 
2013). However, we should note that information was phase‐locked to an ~30 Hz population 
o scillation (Siegel, Warden, & Miller, 2009), which might also be important for information 
coding (more on this later).

Watanabe and Funahashi recently reported similar results in a dual‐task paradigm (Watanabe & 
Funahashi, 2014). As in the standard variant of a delayed saccade task (Funahashi et  al., 
1989), monkeys were required to encode and maintain the location of a saccade target for 
execution at the end of the trial. However, under a dual‐task condition, they were also 
required to attend to a specific spatial location until part way through the WM delay period 
(Figure  13.2b). This cognitive manipulation almost abolished WM‐specific delay activity 
 during the dual‐task period, even on trials in which WM performance was preserved (WM‐
correct trials). Moreover, when the competing task demands were completed, robust delay 
activity was again reinstated (see also Lebedev, Messinger, Kralik, & Wise, 2004). Together, 
these findings suggest that mnemonic delay activity in the PFC is not always critical for 
m aintaining the continuity of WM, but can be dynamically re‐established when attention is 
refocused to the task‐relevant content. WM does not seem to depend on delay activity, but 
might be maintained in an ‘activity‐silent’ format.

‘Activity‐Silent’ WM Stored in Effective Connectivity

Mongillo and colleagues proposed that WM could be maintained during such activity‐silent 
periods as a pattern of synaptic weights in the PFC (Mongillo, Barak, & Tsodyks, 2008), 
analogous to long‐term memory (see also in IT; Sugase‐Miyamoto, Liu, Wiener, Optican, & 
Richmond, 2008). In their computational model schematised in Figure 13.3, activity during 
encoding temporarily changes the synaptic efficacy within the neural network, leaving behind 
a temporary trace via short‐term synaptic plasticity (STSP; Zucker & Regehr, 2002). In this 
particular model, calcium kinetics provide a window of approximately 2 s for STSP (Mongillo 
et al., 2008); however, different time constants inherent to other synaptic processes could 
underlie the diversity of mnemonic time scales observed in the PFC (Bernacchia, Seo, Lee, & 
Wang, 2011). The essential point is that task‐relevant input changes the effective connectivity 
of the network to construct a temporary task‐dependent circuit for WM‐guided behaviour.

Mongillo et al. (2008) originally proposed that an ‘activity‐silent’ coding scheme is more 
efficient than persistent firing models. A coding format that does not depend on an unbroken 
chain for persistent firing would clearly have a cost advantage (i.e., sparsification in time). 
However, here we focus on another possible application of such ‘silent’ memories: They can 
provide a neurobiologically plausible mechanistic account for WM‐guided behaviour as 
g eneralised state‐dependent processing (see below for further discussion). Memories are not 
stored as an active representation, but rather change the functional architecture of the neural 
network for future processing. WM is therefore expressed by the way the network responds 
to new input. State‐dependent readout would avoid the need for explicit mechanisms for 
comparing the internal representation with a separate representation reflecting the new input 
(Mongillo et  al., 2008; Sugase‐Miyamoto et  al., 2008). Moreover, because memories are 
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stored in a format that is qualitatively different from more transient representations 
(e.g., ongoing perception and action), their informational content could be less confusable 
with other activity‐based representations (Olivers, Peters, Houtkamp, & Roelfsema, 2011).

Despite considerable theoretical appeal, a synaptic model of WM is relatively difficult to 
test empirically. Extensive evidence confirms the prevalence of STSP (Zucker & Regehr, 
2002), but its functional role has not yet been fully established. Extracellular recordings can 
only indirectly infer connectivity via interactions between simultaneous spike trains. The 
gold‐standard evidence for a monosynaptic connection is correlated spiking between cell 
pairs. In practice, however, the probability of sampling any two neurons with a measurable 
monosynaptic connection is extremely low (~1–2% of all recorded pairs in Fujisawa, 
Amarasingham, Harrison, & Buzsaki, 2008). Such a poor yield has been effectively prohibi-
tive for testing synaptic plasticity within a standard primate single neurophysiological study. 
Fujisawa and colleagues were able to collect sufficient samples of simultaneous recordings in 
the rat frontal cortex to show that the pattern of effective synaptic connections was dynami-
cally modulated during a WM‐dependent maze task (Fujisawa et al., 2008; Figure 13.4 left 
panel). Although this observation is compatible with a synaptic WM hypothesis, the rodent 
model is not ideal. The rat frontal cortex lacks key features of primate PFC cytoarchitecture 
(Wang et al., 2013). Moreover, the rodent WM analogue is difficult to compare with stan-
dard behavioural tasks used in primate WM experiments. Therefore, further research in the 
primate PFC is required to obtain more specific evidence for a synaptic theory of WM.
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Figure 13.3 Maintaining ‘activity‐silent’ working memory in effective connectivity. Schematic of the 
synaptic model of working memory described in Mongillo et al. (2008). Task‐relevant input (left‐side 
horizontal arrows, blue for ‘Memory A’ and red for ‘Memory B’) drives a stimulus‐specific activity state 
(filled circles), which in turn triggers a specific pattern of short‐term synaptic plasticity between cells 
(bold arrows). Memory is read out from this synaptic trace via the context‐dependent response at 
retrieval (solid black circles, same for ‘Memory A’ and ‘Memory B’). The probe‐driven response will be 
patterned by the hidden state of synaptic efficacy, resulting in a discriminable output pattern (right‐side 
horizontal arrows). Source: Adapted from Stokes 2015.
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Synaptic plasticity is not the only candidate mechanism for an effective connectivity‐coding 
scheme for WM. For example, synchronous oscillations could provide an alternative, comple-
mentary, or even supportive, mechanism for rapid and temporary shifts in the effective con-
nectivity between neurons. The idea is simple: If two neurons are rhythmically synchronised 
in phase with each other, then they will share the same periods of relative excitability and 
relative inhibition. This in turn will ensure that any action potentials from one neuron will 
have a maximal impact on the other neuron (Fries, 2005). Conversely, if two neurons are out 
of phase, the opportunity for successful information transfer between nodes will be reduced. 
In this way, functional pathways can be rapidly constructed (and dissolved) simply by modu-
lating synchrony along pre‐existing structural paths of the network (see also Chapter 14 by 
M. X Cohen in this volume).

Buschman et al. (2012) recently provided evidence for this kind of model. They trained 
monkeys to follow two different rules: Attend and respond to either the colour or orienta-
tion of an imperative stimulus. If synchrony acts to shape the effective connectivity in the 
PFC in support of the task rule, then one would expect the synchrony between populations 

Position
dependency

Memory ‘A’

Content-specific functional networks

Memory ‘B’

P<0.05

Figure 13.4 Evidence for content‐specific functional networks. Simultaneous recordings in the rat 
frontal cortex revealed direction‐specific patterns of synaptic efficacy (red arrows) between cells 
(putative pyramidal [triangles]; putative interneuron [circle]; unclassified [square]) coding for 
direction during a WM‐based maze task (left panel, Source: Adapted from Fujisawa 2008. Reproduced 
with permission of Nature Publishing Group). This is consistent with a role for short‐term synaptic 
plasticity in WM. In the monkey PFC (PS = principal sulcus), different task rules are associated with 
specific functional networks (synchronised electrodes for rule ‘A’ in blue; rule ‘B’ in red) coupled by 
synchrony at ~30 Hz (right panel, Source: Adapted from Buschman 2012. Reproduced with permis-
sion of Elsevier). This is consistent with the idea that coherence could also play a role in constructing 
functional networks for flexible behaviour.

0002833492.indd   227 12/8/2016   3:08:48 PM



228 Mark G. Stokes, Timothy J. Buschman, and Earl K. Miller 

of neurons to change depending on the current rule. To test this prediction, Buschman 
et al. used about a dozen electrodes to simultaneously record the activity of a population of 
neurons in the lPFC. As predicted, they found two distinct patterns of synchrony—one for 
the colour rule and one for the orientation rule—within the lPFC at ‘beta’ frequencies 
(~25 Hz; Figure  13.4, right). Importantly, they also found that neurons carrying task‐ 
relevant information, such as the identity of the stimulus, were synchronised to the  currently 
relevant task ensemble. When the animal switched from one rule to the next, these neurons 
changed their synchronous association, suggesting that synchronous ensembles pull 
together all of the relevant neurons to execute a task. A similar mechanism for the rapid 
configuration of content‐specific network architectures could be used to keep other forms 
of task‐relevant material in WM (Salazar, Dotson, Bressler, & Gray, 2012). As described 
above for STSP, such a rapid shift in the functional architecture of the PFC network could 
directly modulate the response dynamics, allowing for context‐appropriate input‐output 
behaviour (Fries, 2005).

Dynamic Coding

Activity‐dependent dynamics in connectivity patterns (e.g., STSP) predict a cascading inter-
action between past and present input, resulting in a complex, but reproducible trajectory 
through the state space (Figure 13.5a). Consequently, the response profile of the network is 
in constant flux during active processing. While input drives a specific response to a network 
according to the current connectivity state, the resultant activity state in turn shifts the con-
nectivity state. Therefore, the response to subsequent stimulation will trigger a unique 
response pattern according to the new connectivity state. Moreover, this new pattern will 
further modulate the new connectivity state of the system, thus determining the response to 
the next input, and so on (Buonomano & Maass, 2009). The reciprocal interaction between 
the activation state and the underlying connectivity states of the network should result in a 
complex spatiotemporal trajectory through the state space observed throughout different 
experimental contexts (Crowe, Averbeck, & Chafee, 2010; Meyers et al., 2008; Stokes et al., 
2013; see Figure 13.5b). The full trajectory is reproducible across trials to the extent that the 
temporary connectivity state returns to the baseline connective state after some time period. 
The baseline state is determined by more stable connections established via long‐term plas-
ticity (i.e., long‐term potentiation/depression).

By allowing activity and connectivity states to interact across time, dynamic coding 
 dramatically expands the dimensionality of population coding. This can be thought of as a 
temporal extension of the mixed selectivity view outlined above (Rigotti et  al., 2013). 
Neurons in the lPFC do not map neatly to distinct behavioural conditions, but tend to show 
some form of mixed selectivity (Rigotti et al., 2013). The usefulness of such mixed selectivity 
approaches is well established and has been used extensively in computer science (for example, 
it is directly analogous to the kernel trick used in support vector machines (Vapnik, 1998). 
For example, the flexibility of mapping ‘A’ or ‘B’ to a ‘Go’ response is facilitated by having a 
high‐dimensional representation that allows for space to be easily divided in different ways. 
By the same token, the information potential of a dynamic network representation is directly 
proportional to the statistical independence between time points (Stokes, 2011).

Perhaps more importantly, dynamic coding could condition the network to exhibit  context‐
dependent response properties before the connectivity state relaxes back to the default 
 configuration. This idea underpins probe‐driven readout in synaptic models of WM (Mongillo 
et al., 2008; Sugase‐Miyamoto et al., 2008), but could provide a mechanistic account for 
dynamic tuning profiles that could mediate adaptive coding in the lPFC (Duncan & Miller, 
2002). Task‐relevant input temporarily shifts the response profile of the lPFC (Stokes, 2015).
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Figure 13.5 Dynamic coding predicts non‐stationary activity states. a. Activity‐dependent changes in 
effective connectivity (e.g., STSP) will result in a cascading interaction between past and present activity 
states. The activity state of the system depends on the input drive and the current connectivity of the 
network. At each moment, activity changes the connectivity profile, which in turn alters the subsequent 
response of the network, which in turn results in a different response to the same input drive, and so on 
(with permission, from Buonomano & Maass, 2009). b. This mutual interaction between activity states 
and the underlying connectivity states means that even a fixed input to the system will drive a dynamic 
trajectory through activity‐state space, as illustrated by the complex trajectories observed during odour 
processing in the locust olfactory system for two specific smells: citral and geraniol. Source: Buonomano 
2009. Reproduced with permission of Nature Publishing Group.
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Although it is difficult to measure connectivity states with standard extracellular 
 recordings, it is possible to infer changes in network architecture from systematic changes 
in  network behaviour. As already mentioned, the complex spatiotemporal trajectory 
observed during cue processing is a characteristic feature of dynamic changes in network 
behaviour associated with activity‐dependent effective connectivity. However, it is difficult 
to rule out other kinds of dynamics, including different cell latencies (Harvey, Coen, & 
Tank, 2012) or nonlinear interaction between activity states (Mante et  al., 2013). A 
specific hidden state should also emit a signature hum as a result of ambient spontaneous 
activity (Sugase‐Miyamoto et al., 2008); however it would be difficult to differentiate such 
patterned activity from the classic persistent activity states previously ascribed to WM 
(Shafi et al., 2007).

One possible way to explore otherwise hidden states is to ‘ping’ the network with a neutral 
input and see how it responds. As an illustration, consider echolocation (e.g., active sonar), 
where a simple impulse (e.g., ‘ping’) is used to probe the hidden contours of an unseen 
structure (Figure 13.6a). Analogously, the impulse response to neural perturbation should 
co‐depend on the pattern of input activity and the current neural state (activity and connectivity 
state). If the input pattern is held constant, then any response‐related difference could be 
attributed to underlying changes in network behaviour. Exploiting this logic in Stokes et al. 
(2013), we found that a neutral task‐irrelevant stimulus presented during a WM delay period 
generated WM‐specific patterns of activity in the lPFC. We suggested that this context‐
dependent response pattern could reflect differences in the hidden neural state, such as effec-
tive connectivity. We have recently extended this impulse–response approach for non‐invasive 
EEG (Figure 13.6b), providing new opportunities to study hidden states in the human brain 
(Wolff, Ding, Myers, & Stokes, 2015).

To summarise, a dynamic coding framework proposes that context‐defining input config-
ures a temporary functional architecture in the lPFC, perhaps via effective connectivity 
(schematic Figure 13.7). Although this kind of state could be ‘activity silent’, such hidden 
neural states can influence subsequent processing, including dynamic trajectories observed 
during encoding (see Figure 13.7). Such a shift in the underlying hidden state would also 
emit a signature hum from ambient spontaneous activity, and condition the response to an 
impulse perturbation, and/or establish specific activity states when attended. Most impor-
tantly, however, the temporary shift in network behaviour could provide a mechanistic 
account for WM‐guided behaviour specifically (Stokes, 2015), and perhaps context‐
dependent processing more generally (Stokes et al., 2013). The flow of information is effec-
tively re‐routed through the prefrontal network. This can be reformulated as a ‘dynamic 
decision circuit’, where evidence accumulation is flexibly determined by the current task 
context (Deco, Rolls, & Romo, 2010).

Flexibility in Networks

So far we have considered the physiological properties of neurons in the lPFC and how their 
dynamic nature can support cognitive flexibility. However, cognitive flexibility relies on using 
these representations to guide neural activity throughout the brain. Indeed, what may give 
the lPFC its special role in cognitive flexibility may be its connections throughout the brain. 
Here, we will discuss anatomical and physiological evidence that the lPFC plays a key role in 
biasing representations throughout the brain.

The PFC is especially well situated anatomically to play a controlling role over cogni-
tion. First, subregions within the PFC are densely interconnected, both within and across 
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 hemispheres (Barbas, Hilgetag, Saha, Dermon, & Suski, 2005; Barbas & Pandya, 1989). 
This means that even if different subregions within the PFC show an initial preference for 
different cognitive variables, this information will be rapidly shared throughout the circuit, 
ensuring that all regions have the necessary task‐relevant information.

Second, the PFC is widely interconnected with many other cortical regions, with especially 
prominent connections to the temporal, parietal, and cingulate cortex (Kunzle & Akert, 
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Figure  13.6 Revealing hidden brain states. a. Synaptic working memory is effectively ‘activity 
silent’; however, the information content can be inferred from a shift in the behaviour of the network. 
This can be probed using an impulse of activity to drive the network. Source: Stokes 2015, Reproduced 
with permission of Elsevier. b. Source: Wolff et al. (2015) Frontiers in Neuroscience recently devel-
oped an approach for measuring impulse‐driven reactivation of WM using non‐invasive EEG in 
human participants. Using multivariate statistics, we could show that a neutral driving stimulus trig-
gers a distinct pattern of activity that reflects the content of WM (blue trace), even though the driving 
stimulus was exactly the same for all WM conditions. 
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1977; Petrides & Pandya, 1999). Graph analysis of a large database of connections between 
brain regions shows how the PFC is centrally located in the large neural network that is the 
brain (Markov et al., 2013; Figure 13.8).

Finally, the PFC is closely interconnected with several subcortical regions. In particular, the 
PFC is the largest source of projections into the basal ganglia via the striatum (Haber, 
Kunishio, Mizobuchi, & Lynd‐Balta, 1995; Jarbo & Verstynen, 2015; McFarland & Haber, 
2002), forming cortico‐ganglio‐thalamocortical loops (Haber, 2003). We have previously 
suggested that these loops may allow the brain to ‘bootstrap’ from simple representations to 
more complex ones, allowing for the complexity of cognition to be built through learning 
(Buschman & Miller, 2014). The basal ganglia is a ‘fast’ learner, for example, quickly cap-
turing associations between a stimulus and response (e.g., a bullmastiff barks). In contrast, 
the ‘slower’ learning of the PFC allows it to integrate over many experiences. Importantly, 

Dynamic trajectory
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spontaneous activity

Task-relevant input

Energetic state transition Temporary hidden-state Context-dependent response
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Probe input
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Ramp-up/reactivation
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‘no-match ’

Stable low-energy state WM-dependent response

Figure 13.7 Summary schematic of dynamic coding for WM‐dependent behaviour. The initial 
input triggers a specific pattern in the activity state, which in turn alters the underlying hidden 
state of the network via a temporary shift in effective connectivity (e.g., short‐term synaptic plas-
ticity or coherence). Activity‐dependent changes in the hidden state drive a dynamic trajectory 
during the initial high‐energy phase via the reciprocal interaction between hidden states and the 
activity states that modulate them (Meyers et  al., 2008; Stokes et  al., 2013). After activity has 
relaxed to baseline levels, the hidden state remains patterned according to the WM item. Although, 
in principle this temporary hidden state could be ‘activity silent’, spontaneous activity in the net-
work will be patterned according to the WM context, resulting in a WM‐specific activity state 
during spontaneous firing (Stokes et al., 2013). This kind of ‘baseline emission’ could help explain 
content‐specific delay activity observed under some circumstances (Sugase‐Miyamoto et  al., 
2008). Increasing the level of network activity, via attention/rehearsal mechanisms, could increase 
the discriminability of the activity state, resulting in ‘ramp‐up’ delay activity (Barak et al., 2010; 
Watanabe & Funahashi, 2007) or task‐dependent ‘reactivations’ (Watanabe & Funahashi, 2014). 
Finally, when the critical memory probe is presented, the context‐dependent response maps 
activity states for WM‐guided behaviour (e.g., match/non‐match decision; see Stokes et  al., 
2013). Source: Adapted from Stokes 2015.
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the representations learned by the basal ganglia are available to the PFC during learning 
(given the strong connections between the regions). This allows the PFC to integrate these 
associations when forming a more generalised representation (e.g., a bullmastiff is a type of 
dog; and all dogs bark). This generalised representation then becomes available to further fast 
learning in the basal ganglia, allowing the brain to continually bootstrap increasingly complex 
and abstract associations.

Evidence for Top‐Down Control Over Other Brain Areas

Given the anatomical position of the PFC within the broader network of brain structures, it 
seems natural that it plays an important role in cognitive control and, thus, cognitive flexi-
bility. However, structural anatomy is necessary but not sufficient to determine what role the 
PFC plays in cognition. Critically, we must also consider how these network properties are 
modulated for different task contexts. Again, we need to consider the role of effective con-
nectivity for cognitive flexibility.

Detailed studies of visual attention provide rich insights into the role of the PFC in cognitive 
control. Attention is the ability to selectively enhance task‐relevant representations. Typically, 
this is studied in the domain of visual perception, where decades of research have demon-
strated that attention can improve the perception of a selected visual stimulus while simulta-
neously suppressing distracting stimuli (for a recent review, see Carrasco, 2011). In this way, 
visual attention is a case study for cognitive control: Contextual/task variables are used to 

Occipital Parietal Temporal Frontal Prefrontal

Figure 13.8 PFC is a ‘hub’ in the brain. Detailed anatomical work has shown that the brain is a 
highly interconnected network with both feedforward (FF) and feedback (FB) connections between 
regions. Detailed graph analysis of these connections suggests a core ‘hub’ of regions is more densely 
interconnected with other brain regions. Prefrontal regions (shown in red) are a prominent member of 
this hub. Source: Adapted from Markov 2013; region labels follows. (Source: Markov 2013, repro-
duced with permission of AAAS.)
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guide what information is represented in the brain. Just as in cognitive control more broadly, 
lesions of the PFC cause deficits in controlling attention (Rossi, Bichot, Desimone, & 
Ungerleider, 2007). In particular, deficits can be characterised as causing a reduction in the 
ability to shift attention—much like in the WCST, patients with PFC lesions tend to get stuck 
on attending to a single location or object (Knight, 1997; Knight, Grabowecky, & Scabini, 
1995; see also Chapter 29 by Fellows in this volume).

However, it is important to note that the PFC does not act alone in controlling attention. 
In particular, lesions in the parietal cortex will also lead to problems in controlling attention 
that are almost identical to the impact of a PFC lesion (Eglin, Robertson, & Knight, 1991). 
Electrophysiological recordings in the PFC and the parietal cortex find that neurons in both 
regions reflect shifts in attention (for a detailed review, see Miller and Buschman, 2013). 
However, by using multiple electrodes to record simultaneously from both regions, Buschman 
and Miller (2007) found that the PFC plays a leading role when attention is wilfully directed, 
using internal knowledge. Once these signals are observed in the lPFC, they supply feedback 
in a ‘top‐down’ manner to other prefrontal regions (the frontal eye fields, FEF) and the 
parietal cortex (the lateral intraparietal region, LIP). Recent work has extended these findings 
to humans (Li, Gratton, Yao, & Knight, 2010). These results provide evidence that the lPFC 
is the source of top‐down control, using internal knowledge to control other brain regions.

Causal evidence that the PFC acts to bias posterior representations comes from a highly 
influential series of experiments using electrical microstimulation to directly stimulate neu-
rons in the FEF (Moore, 2006). Microstimulation of FEF cells tuned to visuospatial coor-
dinates will boost the animal’s behavioural discriminability at the corresponding spatial 
location (Moore & Fallah, 2001, 2004). In other words, microstimulation of the FEF is 
functionally equivalent to shifting attention to a location. FEF microstimulation was also 
found to have attention‐like effects on V4 neurons (Moore & Armstrong, 2003), providing 
direct evidence that the FEF modulates activity in the visual cortex to bias sensory processing. 
Similar results have been observed in humans using a combination of transcranial magnetic 
stimulation (TMS) and electrophysiology (Taylor, Nobre, & Rushworth, 2007).

More recently, Siegel et al. (2015) found electrophysiological evidence that the PFC plays 
a leading role in cognitive control during a decision‐making task. Two monkeys were trained 
to perform a decision‐making task that required the task‐dependent integration of sensory 
information to make a choice. To trace sensory, task, and choice information across the brain, 
Siegel and colleagues used multiple electrodes to record simultaneously from six brain 
regions: the sensory cortex (V4, MT, and IT), associative cortex (lPFC and LIP), and premo-
tor cortex (FEF) cortex. As expected, sensory information flowed in a bottom‐up manner, 
starting in the sensory regions (V4, MT, and IT) and then propagating into the parietal and 
frontal regions (Figure 13.9a). In contrast, sustained task information and choice information 
flowed in a top‐down direction, starting in the frontal and parietal cortex and then feeding 
back into the sensory regions (Figures 13.9b and 13.9c). The timing of the signals suggests 
that task information represented in fronto‐parietal networks is used to selectively integrate 
the currently relevant sensory information and transform this signal into an action. These 
results complement the results from the prefrontal and parietal cortex in the control of 
attention, demonstrating the PFC represents context information in order to support task‐
relevant computations throughout the brain.

PFC as the Central Executive

Taken together, all of these results suggest that the PFC is ideally suited to play the role of a 
‘central executive’. As reviewed above, lPFC neurons have the ability to adaptively and 
dynamically encode the currently task‐relevant information. Furthermore, because of its 
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 anatomical connections, it is well positioned to use this activity to influence much of the 
brain. In this way, the PFC can act as a ‘central executive’, guiding activity throughout the 
brain in a way that accomplishes the current task.

But what are the neural mechanisms that would allow the PFC to act as a central execu-
tive? When considering possible mechanisms, it is important to remember that they must 
meet two competing criteria. First, any mechanism of cognitive control must be able to 
selectively boost those representations that are relevant to accomplishing the current task 
(while also suppressing undesired representations). However, this selection cannot be 
 absolute—behaviour in the real world is highly dynamic, changing from moment to moment. 
Therefore, the selection mechanism must be flexible enough to allow for rapid changes 
 between behaviours.

The first requirement can be met via experience‐dependent changes in network connec-
tions. Learning could establish new anatomical pathways that are optimised for repeated sce-
narios and behavioural routines. However, the second requirement means that we need to 
consider more rapid changes in network behaviour. The brain simply cannot rewire on a 
moment‐to‐moment basis. Instead, flexibility demands that some changes must be rapid and 
temporary. In other words, anatomy acts as the substrate that defines the set of all possible 
behaviours, and temporary changes in effective connectivity ride on top to select the cur-
rently relevant behaviour.

Miller and Cohen (2001) outline one biophysically plausible mechanism through which 
this might occur. They propose that, at any given moment in time, we are faced with a 
plethora of stimulus inputs, all of which can lead to a large set of possible responses. As we 
reviewed above, there is strong evidence that the PFC is the source of internally directed 
attention and that attention selects a specific desired stimulus from competing stimuli. Miller 
and Cohen propose that this same selection mechanism can be generalised from stimulus 
inputs to all possible stimulus–response mappings. In other words, the model suggests that 
neural activity in the PFC is distributed across the brain in a manner that boosts the represen-
tations of the contextually appropriate behaviour. Competition between representations leads 
to suppression of inappropriate behaviours. Finally, because control depends only on the 
pattern of activity in the PFC, it can be highly flexible, changing as rapidly as the patterns of 
activity in the PFC.

However, the biasing mechanism underlying the Miller and Cohen model may not be the 
only mechanism supporting cognitive control. We suggest that cognitive control (and its 
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Figure 13.9 Dynamics of task information across six different brain regions. (a) Sensory information 
flows from the sensory cortex into the frontal‐parietal associative areas. In contrast, (b) sustained task 
information and (c) decision information are seen first in the frontal‐parietal network. Source: Siegel 
2015. Reproduced with permission of AAAS.
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 flexibility) is the result of changes in effective connectivity. In particular, we suggest that the 
same changes in effective connectivity that act to support dynamics within the PFC can be 
generalised to the whole‐brain network in order to support cognitive flexibility.

Effective Connectivity as a General Mechanism for Dynamic 
Coding Within and Across Brain Areas

As reviewed above, changes in effective connectivity between neurons can alter the dynamics 
of a population of neurons within a cortical region. This could occur through either STSP 
and/or through changes in the synchrony between populations of neurons. These same 
mechanisms could also apply at the scale of whole‐brain networks, with changes in the effec-
tive connectivity between regions acting to bias connections in a way that supports the current 
behaviour.

This is exemplified in many of our everyday experiences. For example, when walking home 
from work, you follow a typical path that has been learned over many experiences: You know 
to go straight when approaching a familiar intersection (Figure 13.10a). Once well learned, 
such behaviours are reliable and operate effortlessly, reflected in the fact that one’s mind often 
wanders as one traverses the route. However, if you suddenly remember you have to get milk 
on the way home, you need to override this default path, deviating towards the corner store. 
Now the same stimulus (the familiar intersection) must lead to a different response (turning 
left; Figure 13.10b). In this case, the PFC becomes engaged and represents the current rule 
in a pattern of activity across a population of neurons. Synchrony within the PFC couples the 
task‐relevant neurons into an ensemble, whereas synchrony between regions may act to bias 
currently relevant associations while suppressing alternatives.

Prefrontal cortex
(Contextual information)

(a) (b)

“Street intersection”
Sensory input Motor output

Motor output

“Street intersection”
Sensory input

“Turn towards store”

“Turn towards home”

“Turn towards store”

“Turn towards home”

Figure 13.10 Model of cognitive control. (a) At baseline, stimuli lead to habitual responses. (b) If one 
is in a situation where the context requires alternative responses, then the PFC represents the current 
task and uses this to bias representations throughout the brain.
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Recent neuroimaging experiments provide general support for such a model. For example, 
Rowe et al. (2005) found that the effective connectivity between the PFC and the posterior 
cortex changed as subjects switched between performing different tasks. Subjects were asked 
to perform two ‘free‐choice’ tasks: one where they selected a colour of their choosing and 
one where they selected an action of their choosing. Using structural equation modelling, 
they measured the effective connectivity between the PFC, motor cortex, and visual cortex 
during both tasks. Interestingly, they found PFC–motor connectivity during the free‐choice 
action task and greater PFC–visual connectivity during the free‐choice colour task. When 
subjects were instructed as to which colour/action to choose, this was no longer the case, 
suggesting that effective connectivity is only seen when cognitive control is needed to select 
among competing representations. Similar results have also been seen during visual 
discrimination tasks (Chadick & Gazzaley, 2011).

In addition, there has been growing evidence that changes in synchrony within the lPFC 
may support flexible cognitive control. As reviewed above, Buschman et al. (2012) found 
that synchrony within the PFC acts to carve task‐relevant ensembles of neurons from the 
PFC population. This could also act to manage the highly dynamic representations within 
the PFC—if neurons are multidimensional, then understanding their current meaning 
requires integrating their activity with a larger population (in order to disambiguate bet-
ween multiple preferred cases). Synchrony could act to bring such a population together, 
allowing downstream neurons to accurately decode the current state (see also ‘synapsem-
bles’; Buzsaki, 2010)

Such changes in synchrony have also been observed across different brain regions. For 
example, Pesaran et al. (2008) found that synchrony between the PFC and the parietal cortex 
was increased when animals were making a free choice regarding what response to make in 
comparison to when they were being instructed as to their choice. Similarly, Buschman and 
Miller (2007) showed that synchrony between the PFC and the parietal cortex changes 
depending on whether attention is internally directed or externally captured. Furthermore, 
Buschman and Miller found that the frequency of synchrony between regions changed: When 
the PFC was internally directing attention, synchrony increased at ‘beta’ frequencies (~25 Hz). 
When attention was externally captured, synchrony between brain regions was at a higher 
frequency (‘gamma’ at ~50 Hz). These results suggest that synchrony at different frequency 
bands may reflect different types of interactions between regions, a model that has been 
recently confirmed in the visual and auditory cortex (Bastos et al., 2015; Fontolan, Morillon, 
Liegeois‐Chauvel, & Giraud, 2014).

Together, these results suggest that changes in synchronous oscillations could directly alter 
the effective connectivity within and between brain regions. Furthermore, changes at differ-
ent frequency bands could impact the direction in which information flows. For example, if 
the brain needed to boost bottom‐up information flow from the visual cortex to the parietal 
cortex, then it would synchronise these two regions at gamma frequencies. Similarly, if the 
brain needed to increase top‐down information flow from the frontal cortex to the parietal 
cortex, it would increase beta‐band synchrony between these regions. It will be important to 
consider how STSP could play a parallel, or even mechanistically supporting, role for inter‐
regional coherence.

Discussion Topics/Future Directions

In this chapter, we have reviewed evidence that the PFC plays a central role in flexible 
cognitive control. We have highlighted the dynamic nature of PFC representations and how 
such representations may support the flexibility needed in high‐level cognition. Finally, we 
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reviewed evidence that the PFC can use these dynamic representations to bias activity 
throughout the brain in order to achieve the task at hand. In particular, we highlighted the 
importance of flexible networks, suggesting that either short‐term changes in synaptic plas-
ticity or changes in synchrony could be effective mechanisms for temporarily altering the 
connectivity between and within populations of neurons.

However, there are several remaining questions. First, it is not clear how the dynamics 
observed within and between brain regions relate to the specific underlying anatomy. In this 
chapter, we have assumed that changes in effective connectivity act within the framework of 
the available anatomical connections. However, it remains to be seen to what degree this is 
true—what proportion of connections are malleable in this way? It is also unclear what neural 
mechanisms drive changes in effective connectivity. For example, if changes in synchrony are 
important for guiding the flow of information within and between networks, what are the 
neural mechanisms that alter this synchrony? How are specific patterns of effective connec-
tivity established and maintained?

Cognitive neuroscience has come a long way since the first PFC recordings in awake, 
behaving monkeys (e.g., Fuster & Alexander, 1971). In this chapter, we have attempted to 
highlight the dynamic nature of PFC representations, and consider potential mechanisms 
that may allow for prefrontal neurons to alter responses throughout the brain to support the 
current behaviour. Together, these ideas could help shed some light on the most important 
aspects of intelligent behaviour: cognitive flexibility.
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