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Abstract

Complex cognitive behaviors, such as context-switching and rule-following, are
thought to be supported by prefrontal cortex (PFC). Neural activity in PFC must thus
be specialized to specific tasks while retaining flexibility. Nonlinear ’mixed’ selectivity
is an important neurophysiological trait for enabling complex and context-dependent
behaviors. Here we investigate (1) the extent to which PFC exhibits computationally-
relevant properties such as mixed selectivity and (2) how such properties could arise
via circuit mechanisms. We show that PFC cells recorded from male and female rhesus
macaques during a complex task show a moderate level of specialization and structure
that is not replicated by a model wherein cells receive random feedforward inputs.
While random connectivity can be effective at generating mixed selectivity, the data
shows significantly more mixed selectivity than predicted by a model with otherwise
matched parameters. A simple Hebbian learning rule applied to the random connec-
tivity, however, increases mixed selectivity and allows the model to match the data
more accurately. To explain how learning achieves this, we provide analysis along with
a clear geometric interpretation of the impact of learning on selectivity. After learning,
the model also matches the data on measures of noise, response density, clustering,
and the distribution of selectivities. Of two styles of Hebbian learning tested, the sim-
pler and more biologically plausible option better matches the data. These modeling
results give intuition about how neural properties important for cognition can arise in
a circuit and make clear experimental predictions regarding how various measures of
selectivity would evolve during animal training.

Significance Statement: Prefrontal cortex (PFC) is a brain region believed
to support the ability of animals to engage in complex behavior. How neurons in
this area respond to stimuli—and in particular, to combinations of stimuli (”mixed
selectivity”)—is a topic of interest. Despite the fact that models with random feedfor-
ward connectivity are capable of creating computationally-relevant mixed selectivity,
such a model does not match the levels of mixed selectivity seen in the data analyzed
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in this study. Adding simple Hebbian learning to the model increases mixed selectivity
to the correct level and makes the model match the data on several other relevant mea-
sures. This study thus offers predictions on how mixed selectivity and other properties
evolve with training.

1. Introduction

The ability to execute complex, context-dependent behavior is evolutionarily valu-1

able and ethologically observed (Rendall et al., 1999; Kalin et al., 1991). How the2

brain carries out complex behaviors is thus the topic of many neuroscientific studies.3

A region of focus is the prefrontal cortex (PFC), (Botvinick, 2008; Waskom et al., 2014;4

Miller and Cohen, 2001; Duncan, 2001), as lesion (Szczepanski and Knight, 2014) and5

imaging (Miller and D’Esposito, 2005; Bugatus et al., 2017) studies have implied its6

role in complex cognitive tasks. As a result, several theories have been put forth to ex-7

plain how PFC can support complexity on the computational and neural levels (Miller8

and Cohen, 2001; Wood and Grafman, 2003; Fusi et al., 2016).9

Observing the selectivity profiles of its constituent cells is a common way to inves-10

tigate a neural population’s role in a computation. In its simplest form, this involves11

modeling a neuron’s firing rate as a function of a single stimulus, or, perhaps, an ad-12

ditive function of multiple stimuli (Sahani and Linden, 2003; Duhamel et al., 1998;13

Moser et al., 2008). More recently, however, the role of neurons that combine inputs14

in a nonlinear way has been investigated (Rigotti et al., 2013; Mante et al., 2013;15

Stokes et al., 2013; Pagan et al., 2013; Meister et al., 2013; Raposo et al., 2014; Fusi16

et al., 2016), often in PFC. Rather than responding only to changes in one input, or17

to changes in multiple inputs in a linear way, neurons with nonlinear mixed selectivity18

have firing rate responses that are a nonlinear function of two or more inputs (Figure19

1B). Cells with this selectivity (which we call simply ”mixed”) are important for pop-20

ulation coding because of their effect on the dimensionality of the representation: they21

increase the dimensionality of the population response, which increases the number of22

patterns that a linear classifier can read out. This means that arbitrary combinations23

of inputs can be mapped to arbitrary outputs. In relation to complex behaviors, mixed24

selectivity allows for a change in context, for example, to lead to different behavioral25

outputs, even if stimulus inputs are the same. For more on the benefits of mixed26

selectivity, see Fusi et al. (2016).27

Theoretical work on how these properties can arise on a circuit level shows that28

random connectivity is surprisingly efficient at increasing the dimensionality of the29

neural representation (Jaeger and Haas, 2004; Maass et al., 2002; Buonomano and30

Maass, 2009; Rigotti et al., 2010; Barak et al., 2013; Babadi and Sompolinsky, 2014;31

Litwin-Kumar et al., 2017). This means that mixed selectivity can be observed even32

without learning. However, learning can greatly improve the ability of a linear readout33

to generalize and hence to make the readout response more robust to noise and varia-34

tions in the sensory inputs (see e.g. Fusi et al. (2016)). The ideal situation would be35

one in which a neural population represents only the task relevant variables and the36

representation has the maximal dimensionality. In brain areas like PFC, where there37

is a huge convergence of inputs from many other brain areas, it might be important38

to bias the mixed selectivity representations toward the task relevant variables, which39

can be achieved only with learning.40

In this study, we characterize the response of a population of PFC cells in terms of41
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the distribution of linear and nonlinear selectivity, the response density, and the clus-42

tering of selectivities. All these properties characterize the dimensionality of neural43

representations and are important for the readout performance. As described above,44

nonlinear mixed selectivity is important for increasing dimensionality. High dimension-45

ality, however, also requires a diversity of responses. We studied this by determining46

how the preference to different stimuli are distributed across the population. In some47

lower sensory areas, cells tend to be categorizable—that is, there are groups of cells48

that display similar preference profiles (Goard et al., 2016). More associative areas49

tend to lose this clustering of cell types. Such categories may be useful when an area is50

specialized for a given task, but diversity is needed for flexibility (Raposo et al., 2014).51

After characterizing the PFC response, we show that a model with random connec-52

tivity can only partially explain the PFC representation. However, with a relatively53

small deviation from random connectivity—obtained with a simple form of Hebbian54

learning that is characterized by only two parameters—the model describes the data55

significantly better.56

2. Materials and Methods57

2.1. Task Design58

The data used in this study comes from previously published work (Warden and59

Miller, 2010). In brief, two monkeys performed two variants of a delayed match-to-60

sample task (Figure 1A). In both task types, after initial fixation, two image cues61

(chosen from four possible) were presented in sequence for 500ms each with a 1000ms62

delay period in between the first and second cue. After a second delay period also63

lasting 1000ms, one of two events occurred, depending on the task type. In the recog-64

nition task, another sequence of two images was shown and the monkey was instructed65

to release a bar if this test sequence matched the initial sample sequence. In the recall66

task, an array of three images appeared on the screen, and the monkey had to saccade67

to the two images from the sample sequence in the correct order. Blocks of recall and68

recognition tasks were interleaved during each recording session. Given that each se-69

quence had two different image cues chosen from the four total image identity options70

and that there were two task types, the total number of conditions was 4 x 3 x 2 =71

24.72

2.2. Neural Data73

Recordings were made using grids with 1 mm spacing (Crist Instrument) and74

custom-made independently moveable microdrives to lower eight dura-puncturing Epoxylite-75

coated tungsten microelectrodes (FHC) until single neurons were isolated. Cells were76

recorded from two adult rhesus monkeys (Macaca mulatta), one female and one male,77

and combined for analysis. No attempt was made to pre-screen neurons, and a total78

of 248 neurons were recorded (with each neuron observed under both task types).79

For the purposes of this study, firing rates for each neuron were calculated as the80

total number of spikes during the later 900ms of the second delay period, as it was at81

this point that the identities of all task variables were known. Any cells that did not82

have at least 10 trials for each condition or did not have a mean firing rate of at least83

1 spike/sec as averaged over all trials and conditions were discarded. This left 90 cells.84
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2.3. Fano Factor Measurements85

Noise is an important variable when measuring selectivity. High noise levels re-86

quire stronger tuning signals in order to be useful for downstream areas, and to reach87

significance in statistical testing. Thus, any model attempting to match the selectivity88

profile of a population must be constrained to have the same level of noise. Here, we89

measure noise as the Fano Factor (variance divided by mean) of each cell’s activity90

across trials for each condition (spike count taken from later 900ms of the two-object91

delay). This gives 24 values per cell. This is the trial Fano Factor. Averaging over92

conditions gives one trial Fano Factor value per cell, and averaging over cells gives a93

single number representing the average noise level of the network. Unless otherwise94

stated, FFT refers to this network averaged measure.95

Another measure of interest is how a neuron’s response is distributed across condi-96

tions. Do neurons respond differentially to a small number of conditions (i.e., a sparse97

response), or is the distribution more flat? To measure this, the firing rate for each98

condition (averaged across trials) was calculated for each neuron and the Fano Factor99

was calculated across conditions. In this case, a large value means that some conditions100

elicit a very different response than others, while a small value suggests the responses101

across conditions are more similar. We call this value the response variability, or RV.102

Averaging across all cells gives the response variability of the network.103

See Figure 1C for a visualization of these measures in an example neuron.104

2.4. Selectivity Measurements105

A neuron is selective to a task variable if its firing rate is significantly and reliably106

affected by the identity of that task variable. In this task, each condition contains three107

task variables: task type (recall or recognition), the identity of the first cue, and the108

identity of the second cue. Therefore, we used a 3-way ANOVA to determine if a given109

neuron’s firing rate was significantly (p<.05) affected by a task variable or combination110

of task variables. Selectivity can be of two types: pure or nonlinearly mixed (referred111

to as just ”mixed”), based on which terms in the ANOVA are significant. If a neuron112

has a significant effect from one of the task variables, for example, it would have113

pure selectivity to that variable. Interaction terms in the ANOVA represent nonlinear114

effects from combinations of variables. Therefore, any neurons that have significant115

contributions from interaction terms as determined by the ANOVA have nonlinear116

mixed selectivity. As an example, if a neuron’s firing rate can be described by a117

function that is linear in the identity of the task type, the identity of the second cue,118

and the identity of the combination of task type and first cue, then that neuron has119

pure selectivity to task type (TT), pure selectivity to cue 2 (C2) and mixed selectivity120

to the combination of task type and cue 1 (TTxC1). Note that having pure selectivity121

to two or more task variables is not the same as having nonlinear mixed selectivity to122

a combination of those task variables.123

We also investigate whether the nonlinear interactions we observe indicate supra-124

or sublinear effects. To do this we fit a general linear model that includes 2nd-order125

interaction terms to each neuron’s response. The signs of the coefficients for the 2nd-126

order terms indicate whether a certain nonlinear effect leads to a response higher127

(supralinear) or lower (sublinear) than expected from a purely additive relationship.128

2.5. Clustering Measurement129

Beyond the numbers of neurons selective to different task variables, an understand-130

ing of how preferences to task variable identities cluster can inform network models.131
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For this, we use a method that is inspired by the Projection Angle Index of Response132

Similarity (PAIRS) measurement as described in Raposo et al. (2014). For this measure133

each neuron is treated as a vector in selectivity space, where the dimensions represent134

preference to a given task variable identity (Figure 1D). To get these values, neuronal135

responses are fit with a general linear model (GLM) to find which task variable identi-136

ties significantly contribute to the firing rate. Note that this gives a beta coefficient for137

each value of each task variable, such as cue 1=B. These values dictate how the firing138

rate changes as task variable identities differ from the reference condition Task Type =139

Recognition, Cue 1 =A, and Cue 2 = B. Formally: FR = FRref + β1[TT = Recall] +140

β2[C1 = B]+β3[C1 = C]+β4[C1 = D]+β5[C2 = A]+β6[C2 = C]+β7[C2 = D]. The141

beta values found for each cell via this method are shown in Figure 3C (non-significant142

coefficients — those with p>.05 — are set to 0).143

This analysis does not include interaction terms (second- or third-order terms).144

The reason for this is partly that, given the relatively low number of trials, the high145

dimensional full GLM model would be difficult to confidently fit. In addition, analysis146

of clustering in a high-dimensional space ( the full model would yield a 45-dimensional147

space) with a relatively small number of neurons would be difficult to interpret. There-148

fore, we look only at how the cells cluster according to their preference of the identities149

associated with the pure terms.150

The coefficients derived from the GLM define a vector in a 7-D vector space for151

each neuron (see Figure 1D for a schematic). The clustering method compares the152

distribution of vectors generated by the data (each normalized to be unit length)153

to a uniform distribution on the unit hypersphere in order to determine if certain154

combinations of preferences are more common than expected by chance.155

In PAIRS (Raposo et al., 2014), this comparison is done by first computing the156

average angle between a given vector and its k nearest neighbors and seeing if the157

distribution of those values differs between the data and a random population . That158

approach is less reliable in higher dimensions, therefore we use the Bingham test159

instead of PAIRS (Mardia and Jupp, 2000). The Bingham test calculates the test160

statistic S = p(p+2)
2
n(Tr(T2) − 1

p
). This statistic, which we refer to as the clustering161

value, measures the extent to which the scatter matrix, T, (an approximation of the162

covariance matrix) differs from the identity matrix (scaled by 1/p), where p and n are163

the dimensions of the selectivity space (7) and the number of cells (90), respectively.164

The higher this value is, the more the data deviates from a random population of165

vectors wherein selectivity values are IID. Thus, a high value suggests that neurons in166

the population cluster according to task variable identity preferences. In order to put167

this clustering value into context we compared the value found from the data to two168

distributions: one generated by shuffled data and one generated from data designed to169

be highly clustered. For the shuffled data, we created ”fake” cell vectors by shuffling170

the selectivity values across all cells. For the clustered data, we created 3 categories171

of fake cells, each defined by pure selectivity to two specific task variable identities.172

A population of 90 cells was created by combining 30 cells from each category (the173

population was also designed to have the same average firing rate and FFT of the data).174

This results in a population that has 3 clear clusters of cell types in selectivity space.175

100 populations based on each type of fake data were created in order to generate176

distributions that represent random and clustered data.177

Using the Gine-Ajne test of uniformity on the hypersphere (Giné, 1975) gives very178

similar results to the Bingham test results.179
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2.6. Circuit Model180

To explore the circuit mechanisms behind PFC selectivity, we built a simple two-181

layer neural model, modeled off of previous work (Barak et al., 2013) (see Figure 4A182

for a diagram). The first layer consists of populations of binary neurons, with each183

population representing a task variable identity. To replicate a given condition, the184

populations associated with the task variable identities of that condition are turned on185

(set to 1) and all other populations are off (set to 0). Each population has a baseline186

of 50 neurons. To capture the biases in selectivities found in this dataset (particularly187

the fact that, in the 900ms period we used for this analysis, many more cells show188

selectivity to task type than cue 2 and to cue 2 than cue 1), the number of neurons in189

the task type and cue 2 populations are scaled by factors that reflect these biases (80190

cells in each task type population and 60 in each cue 2 population). The exact values191

of these weightings do not have a significant impact on properties of interest in the192

model.193

The second layer represents PFC cells. These cells get weighted input from a subset194

of the first layer cells. Cells from the input layer to the PFC layer are connected with195

probability .25 (unless otherwise stated), and weights for the existing connections are196

drawn from a Gaussian distribution (μW = .207, and σW = μW unless otherwise197

stated. Because negative weights are set to 0, the actual connection probability and198

σW may be slightly lower than given).199

The activity of a PFC cell on each trial, t, is a sigmoidal function of the sum of its200

inputs:201

rti = k φ

(∑
j

wijx
t
j + ε

t
A −Θi

)

φ(z) =
1

1 + e−z

εtA ∼ N (0, σA2) σA = aμW ,

(1)

where xj is the activity (0 or 1) of the j
th input neuron and wij is the weight from the202

jth input neuron to the ith output neuron. Θi is the threshold for the i
th output neuron,203

which is calculated as a percentage of the total weight it receives: Θi = λΣjwij. The204

λ value is constant across all cells, making Θ cell-dependent. k scales the responses so205

that the average model firing rate matches that of the data.206

Two sources of noise are used to model trial-to-trial variability. εA is an additive207

synaptic noise term drawn independently on each trial for each cell from a Gaussian208

distribution with mean zero. The standard deviation for this distribution is controlled209

by the parameter a, which defines σA in units of the mean of the weight distribution,210

μW . The second noise source is multiplicative and depends on the activity of a given211

cell on each trial:212

yti ∼ N (rti , σMt
i
2
)

σM
t
i = mr

t
i

(2)
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Thus, the final activity of an output PFC cell on each trial, yti , is drawn from a213

Gaussian with a standard deviation that is a function of rti . This standard deviation is214

controlled by the parameter m. Both m and a are fit to make the model FFT match215

that of the data.216

To make the model as comparable to the data as possible, ten trials are run for217

each condition and 90 model PFC cells are used for inclusion in the analysis.218

2.7. Hebbian Learning219

A simplified version of Hebbian learning is implemented in the network in a manner220

that captures the ”rich get richer” nature of Hebbian learning while keeping the overall221

input to an individual cell constant. In traditional Hebbian learning, weight updates222

are a function of the activity levels of the pre- and post-synaptic neurons: Δwij =223

g(xj, yi). In this simplified model we use connection strength as a proxy for joint224

activity levels: Δwij = g(wij). We also implement a weight normalization procedure225

so that the total input weight to a cell remains constant as weights change.226

To do this, we first calculate the total amount of input each output cell, i, receives227

from each input population, p:228

Ipi =
∑
j∈p
wij (3)

The input populations (each corresponding to one task variable identity) are then229

ranked according to this value. The top NL populations according to this ranking (that230

is, those with the strongest total weights onto to the output cell) have the weights from231

their constituent cells increased according to:232

wij = (1 + η)wij, j ∈ P1:NL , (4)

where η is the learning rate (set to .2 unless otherwise stated). This amounts to233

a multiplicative scaling of synaptic weights, which is compatible with experimental234

observations (Loewenstein et al., 2011; Turrigiano et al., 1998). After this, all weights235

into the cell are normalized via:236

wi = wi

∑P
p=1 I

p
i∑J

j=1wij

(5)

Note, the numerator in the second term is the sum of all weights into the cell before237

Eqn. 4 is applied and the denominator is the sum after it is applied. As learning pro-238

gresses according to this rule, weights from cells that aren’t in the top NL populations239

trend to zero. At that point, each learning step increases the weights of all remaining240

connections by η and normalizes them all by the same amount, resulting in no further241

changes in the weight matrix.242

In this work, two versions of Hebbian learning are tested. In the unrestricted, or243

”free”, learning condition described above, the top NL populations are chosen freely244

from all input populations (equivalently, all task variable identities) based solely on245

the total input coming from each population after the random weights are assigned.246

The alternative, ”constrained” learning, is largely the same, but with a constraint247

on how these top NL populations are chosen: all task variables must be represented248

before any can be repeated. So, two populations representing different identities of249
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the same task variable (e.g., cue 1 A and cue 1 B) will not both be included in the250

NL populations unless both other task variables already have a population included251

(which would require that NL > 3). So, with NL = 3, exactly one population from252

each task variable (task type, cue 1, cue 2) will have weights increased. This variant253

of the learning procedure was designed to ensure that inputs could be mixed from254

different task variables, to increase the likelihood that mixed selectivity would arise.255

Both forms of learning are demonstrated for an example cell in Figure 4B.256

In both forms of learning, the combination of weight updating and normalization257

is applied to each cell once per learning step.258

2.8. Classification Performance259

The measures of selectivity we have looked at in the data are important for the260

ability of a population to represent task information in a way that can be readily261

readout. We also test directly the ability to readout task information from our model262

populations using linear discriminant analysis (LDA). We generate 20 trials per condi-263

tion from the model and use 10 to train the classifiers and 10 to test. Three separate264

classifiers are trained to read out each of the three linear terms: task type identity, cue265

1 identity, and cue 2 identity. The average performance across these three tasks gives266

the ”linear” performance. An additional four classifiers were trained to read out each267

of the joint identities of task type-cue 1, task-type 2, cue 1-cue 2, and task type-cue268

1-cue 2. The average performance across these four tasks is called the ”higher order”269

performance.270

We also conduct an explicit test of the model’s ability to perform a non-linearly271

separable task. For this, all combinations of identities for cue 1 and cue 2 are generated272

as inputs to the network, and the classification task is to determine if the identities273

are the same or different (the task type input is held constant). Fifty trials are used274

for training (using LDA) and fifty for testing. We also measure the ability of the275

input population to perform this task (by using the binary input population activity276

directly), in which case additive noise is used to generate multiple trials, and the mean277

firing rate and FFT are fit to match that of the data.278

2.9. Toy Model Calculations279

To make calculations and visualizations of the impacts of learning easier, we use a280

further simplified toy model (see Figure 8A (left) for a schematic). Instead of a sig-281

moidal nonlinearity, the heaviside function is used. The toy model has two task vari-282

ables (T1 and T2) and each task variable has two possible identities (A or B). Four ran-283

dom weights connect these input populations to the output cell: W1A,W1B,W2A,W2B.284

On each condition, exactly one task variable identity from each task variable is active285

(set to 1). This gives four possible conditions, each of which is plotted as a point in the286

input space in Figure 2. The threshold is denoted by the dotted lines. If the weighted287

sum of the inputs on a given condition is above the threshold, the cell is active (green),288

otherwise it is not.289

The toy model follows the same learning rules defined for the full model. Examples290

of the impacts of learning on the representation of the 4 conditions are seen in Figure291

2A and B.292

A cell’s selectivity is more robust to additive noise (which functions like a shift in293

threshold) if there is a large range of threshold values for which its selectivity doesn’t294

change. To explore noise robustness in this model, we will define:295
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Δx ≡ W1B −W1A Δy ≡ W2B −W2A α ≡ Δy/Δx ≥ 1
(6)

Thus, α is the ratio of the side lengths of the rectangle formed by the four conditions296

(see Figure 2C, top). Without loss of generality, we define the larger of the two sides297

as associated with T2, W2B > W2A, and W1B > W1A.298

For the cell to display pure selectivity to T2, the following inequality must hold:299

W1B +W2A ≤ Θ < W1A +W2B (7)

Therefore the range of thresholds that give rise to pure selectivity is:300

(W1A +W2B)− (W1B +W2A) = (W2B −W2A) + (W1A −W1B)

= Δy −Δx = Δx(α− 1)
(8)

The analogous calculations for mixed selectivity (assuming the T1B-T2B condition is301

active only, but results are identical for T1A-T2A being the only inactive condition)302

are:303

W1A +W2B ≤ Θ < W1B +W2B

W1B +W2B − (W1A +W2B) = (W1B −W1A) = Δx

(9)

Thus, pure selectivity is more noise robust than mixed selectivity when α > 2. This304

imbalance can be seen in Figure 2C.305

Now we show that, given weights drawn at random from a Gaussian distribution,306

α > 2 is more common than α < 2. The argument goes as follows: because Δx307

and Δy are differences of normally distributed variables, they are themselves normally308

distributed (with μ = 0, σ = 2σw). The ratio of these differences is thus given309

by a Cauchy distribution. However, because α represents a ratio of lengths, we are310

only interested in the magnitude of this ratio, which follows a standard half-Cauchy311

distribution. Furthermore, α is defined such that the larger difference should always312

be in the numerator. Thus,313

P (α > 2) = 1−
∫ 2

1/2

2

π(1 + u2)
= .5903. (10)

Therefore, the majority of cells can be expected to have α > 2 with random weights314

and thus higher noise robustness for pure selectivity than for mixed.315

This comparison of noise robustness, however, assumes the threshold is placed at316

the most noise robust location for each type of selectivity. Here, the threshold is317

defined as a fraction of the total weight going into the cell: Θ = λΣW . As we increase318

λ then, the threshold is a line with slope of -1 that moves from the bottom left corner319

up to the top right. Examples of how this impacts selectivity are shown in Figure 2D.320

To investigate how noise robustness changes with λ, we generate a large (10000)321

population of cells, each with four random input weights drawn from a Gaussian with322

positive mean and constrained to be non-negative (qualitative results hold for many323

weight/variance pairs), and calculate the size of the additive noise shift needed to324

cause each cell to lose its selectivity (whichever it has).325
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Assuming a fixed threshold, we then explore how noise robustness varies with326

learning. In the case of constrained learning with NL = 2, Δx and Δy both increase.327

According to Eqn. 7 and Eqn. 9, robustness to both selectivities increases with Δx.328

The relative increase in robustness will depend on how α changes. It can be shown329

that if W1B

W1A
< W2B

W2A
then Δx will expand more than Δy and α will decrease, meaning the330

increase in noise robustness favors mixed selectivity. If W1B

W1A
> W2B

W2A
, then α will grow,331

and the increase in noise robustness will be larger for pure than mixed. However, this332

condition is less common.333

When NL = 1, learning ultimately leads to a larger ratio between the side lengths.334

This is straightforward for W2B > W1B (Δy grows and Δx shrinks). However, if335

W1B > W2B, α will first decrease as Δx grows and Δy shrinks. This is good for mixed336

noise robustness. The ratio then flips (Δx > Δy), and Δy (the side that is now shorter)337

is still shrinking and Δx is growing. In this circumstance, if Δy/Δx becomes less than338

1
2
, the representation will favor pure noise robustness over mixed. This flipping of α339

is possible for some cells when NL = 2 if W1B

W1A
< W2B

W2A
, but the weights would likely340

plateau before α became less than 1
2
, and so the drop in mixed selectivity does not341

occur.342

In free learning with NL = 2, cells that have W1A > W2B, will see both weights343

from T1 increase and (due to the weight normalization) both weights from T2 decrease.344

Because the weights change in proportion to their value, Δx increases, Δy decreases345

and so α goes down. This leads to more noise robustness for mixed and less for pure.346

If W2A > W1B, these trends are reversed and the cell has more noise robustness for347

pure and less for mixed.348

2.10. Experimental Design and Statistical Analysis349

As described in the Selectivity Measurements subsection above, the main statistical350

test used in this work was a 3-way ANOVA (within-subjects, with a total 23 degrees351

of freedom). Each of the 90 cells used had 10 trials from each condition. As part of352

calculating the clustering value (see Clustering Measurement subsections above), we353

calculated the p-value for the F statistic of the hypothesis test that each coefficient in354

our General Linear Model was equal to 0. All analyses were performed in MATLAB.355

3. Results356

In this study, we analyzed various measures of selectivity of a population of PFC357

cells recorded as an animal carried out a complex delayed match-to-sample task.358

Through this process, several properties of the representation in PFC were discov-359

ered and a simple circuit model that included Hebbian learning was able to replicate360

them. These properties, combined with the modeling results, provide support for the361

notion that PFC selectivities are the result of Hebbian learning in a random network.362

3.1. PFC Population is Moderately Specialized and Selective363

The average firing rate of cells in this population was 4.9±5.1 spikes/sec. Fano364

Factor analyses provided measurements of the noise and density of response in the365

data (Figure 3B). The average value of the across-trial Fano Factor (FFT = 2.8± 1.7366

spikes/sec), shows that the data has elevated levels of noise compared to a Poisson367

assumption. Looking at response variability (RV)—a measure of how a cell’s response368

is distributed across conditions—suggests that PFC cells are responding densely across369
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the 24 conditions (RV = 1.1± 1.1 spikes/sec, for comparison, at the observed average370

firing rates, a cell that responded only to a single condition would have RV ≈ 120, one371

that responded to two conditions would have RV ≈ 57). This finding suggests that372

these cells are not responding sparsely and are not very specialized for the individual373

conditions of this task.374

Each condition is defined by a unique combination of 3 task variables: task type,375

identity of image cue 1 and identity of image cue 2 (Figure 1A). Selectivity to task376

variables was determined via a 3-way ANOVA. The results of this analysis are shown377

in Figure 3A. This figure shows the percentage of cells with selectivity to each task378

variable and combination of task variables (as determined by a significant (p<.05)379

term in the ANOVA). A cell that has selectivity to any of the regular task variables380

(task type, cue 1, cue 2) has pure selectivity, while a cell that has selectivity to any381

of the interaction terms (combination of task variables such as task type x cue 1, task382

type x cue 2, etc) has nonlinear mixed selectivity. The final two bars in Figure 3A383

show the number of cells with pure and mixed selectivity defined this way. Note that384

a cell can have both pure and mixed selectivity, thus the two values sum to more than385

100%.386

The majority of cells (77/90) showed pure selectivity to at least one task variable.387

But the population shows clear biases in the distribution of these pure selectivities:388

task type selectivity is the most common (59 cells) and cue 2 is represented more than389

cue 1 (48 vs. 30 cells) (these biases are observable in the GLM fits as well, see Figure390

3C). This latter effect may be due to the time at which these rates were collected: these391

rates were taken during the second delay, which comes directly after the presentation392

of the second cue. The former effect is perhaps more surprising. While the task type is393

changed in blocks and thus knowable to the animal on each trial (with the exclusion of394

block changes), there is no explicit need for the animal to store this information: the395

presence of a second sequence or an array of images will signal the task type without396

the need for prior knowledge. However, regardless of its functional role in this task,397

contextual encoding is a common occurrence (Eichenbaum et al., 2007; Komorowski398

et al., 2013). Furthermore, the fact that the recall task is more challenging than the399

recognition task may contribute to clear representation of task type. That is, it is400

possible that the animals keep track of the task type in order to know how much effort401

to exert during the task.402

Approximately half of the cells (46) had some form of mixed selectivity, mostly to403

combinations of two task variables. The population had a roughly equal balance of404

both supra- and sublinear effects of these 2-way interactions (ratio of positive to neg-405

ative terms: 1.07). The small number of cells with selectivity to the 3-way interaction406

term (TTxC1xC2) is consistent with the relatively low value of RV in this population,407

as a strong preference for an individual condition would lead to a high RV. The number408

of cells with only mixed selectivity was low (only 1 out of 90 cells), 32 cells had only409

pure selectivity, and 12 cells had no selectivity.410

We use a population-level analysis inspired by (Raposo et al., 2014) to measure the411

extent to which cell types are clustered into categories. Here, we used this analysis412

to determine if cells cluster according to their responsiveness to different task variable413

identities (i.e., recognition vs recall). That is, are there groups of neurons which all414

prefer the same task type and image identities, beyond what would be expected by415

chance? In order to explore this, we first use a general linear model (GLM), with task416

variable identities as regressors, to fit each neuron individually. The beta coefficients417
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from these fits define a neuron’s position in selectivity space (these beta coefficient418

values, which represent how the identity of each task variable changes a neuron’s firing419

rate as compared to the reference condition, are shown in Figure 3C. A schematic of420

how the clustering measure works is shown in Figure 1D). After normalizing each421

vector, the clustering measure then determines the extent to which the population of422

vectors deviates from a uniform distribution on the unit hypersphere. The data had423

a clustering value of 186.2. Comparing this to the mean values of two distributions of424

artificially generated populations suggests the data has a mild but significant deviation425

from random: the average clustering value for populations generated by randomly426

shuffling the coefficient values is -23±22, and the average value of populations that427

have 3 distinct clusters of selectivity is 706.7±6.8. As the data clustering value sits in428

between these values and closer to the shuffled data, we conclude that some structure429

does exist in the data, yet the cells in this population do not appear to form strongly430

separable categories as defined by task variable identity preference (Figure 3D).431

3.2. Circuit Model without Hebbian Learning Cannot Replicate Mix of Density and432

Specialization433

A simple circuit model was made to replicate the selectivity properties found in434

the data. The model contains two layers: an input layer consisting of binary neurons435

that represent task variable identities and an output layer consisting of ”PFC” neu-436

rons which get randomly-weighted input from the first layer and whose activity is a437

nonlinear function of the sum of that input. The model also has two forms of noise:438

an additive term applied before the nonlinearity (which replicates input/background439

noise, and implicitly shifts the threshold of the cell), and a multiplicative term applied440

after (which enforces the observed relationship between firing rate and variance) (see441

Methods and Figure 4A).442

The output of the initial circuit model, prior to any Hebbian learning, was analyzed443

in the same way as the data to determine if it matched the properties found in PFC.444

The results of this can be found in Figure 5. First, in Figure 5A, we demonstrate the445

impact of the noise parameters on FFT , pure and mixed selectivity, and the clustering446

value. As expected, increasing the additive and/or multiplicative noise terms increases447

the FFT , as this is a measure of trial variability. Increasing within-condition noise also448

makes it less likely that a cell will show significant differences across conditions, and449

thus the percentage of cells with pure and mixed selectivity are inversely related to the450

noise parameters, (the relative sensitivities of mixed and pure selectivity to noise will451

be discussed in depth later). For similar reasons, the clustering value also decreases452

with noise (finding significant deviations from a uniform distribution is less likely if453

cells do not show sufficiently strong preferences).454

To determine the impact other properties of the model had on our measures of in-455

terest, we varied several other parameters. Figure 5B shows what happens at different456

values of the threshold parameter. Here, the threshold is given as the amount of input457

the cell needs to reach half its maximal activity, expressed as a fraction of its total in-458

put weight (keep in mind that, given the number of input cells in each population and459

the task structure, roughly one-third of input cells are on per trial). The colored lines460

are, for each measure, the extent to which the model differs from the data, expressed461

in units of the model’s standard deviation (calculated over 100 instantiations of the462

model). Due to the impact of noise parameters discussed above, at each point in this463

graph the noise parameters were fit to ensure the model was within ± 1.5 standard464
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deviations of the data FFT (this generally meant that it varied from ∼ 2.8 to 2.9).465

With an increasing threshold, the RV (green line in Figure 5B) increases. This466

is because higher thresholds mean cells respond to only a few combinations of input,467

rather than responding similarly to many, and the RV is a measure of variability in468

response across conditions (note that while RV appears to peak at ≈ .35 and decrease,469

this particular trend is driven by an increase in RV standard deviation; the mean470

continues to increase). The percentage of cells with mixed selectivity (red line) also471

increases with threshold. With a higher threshold, the majority of conditions give472

input to the cell that lies in the lower portion of the sigmoidal function (bottom of473

Figure 4A). The nonlinearity is strong here—with some input producing little to no474

response—thus, more cells can attain nonlinear mixed selectivity. Pure selectivity also475

increases with threshold, and the percent of cells with pure selectivity goes quickly476

to 100 (and the standard deviation of the model gets increasingly small). We go into477

more detail about the reliance of selectivity on threshold later.478

The clustering value relies on cells having preference for task variable identities479

and so increases as selectivity increases initially. However, just having selectivity is480

not enough to form clusters, and so the clustering value in the model levels off below481

the data value even as the number of cells with pure selectivity reaches full capacity.482

Thus, with the exception of the clustering value, the model can reach the values found483

in the data by using different thresholds. As Figure 5B shows, however, at no value of484

the threshold are all measures of PFC response in the model simultaneously aligned485

with those in the data.486

Figure 5C shows how the same measures change when the width of the weight487

distribution from input to PFC cells is varied. Here, the standard deviation of the488

distribution from which connection strengths are drawn (σW ) is given as a factor of489

the mean weight, μW . Increasing this value increases pure and mixed selectivity as490

well as RV. Because a wider weight distribution increases the chances of a very strong491

weight existing from an input cell to an output cell, it makes it easier for selectivity492

to emerge (that is, the output cell’s response will be strongly impacted by the task493

variable identity the input cell represents). The RV increase occurs for similar reasons:494

a cell may have uneven responses across conditions due to strong inputs from single495

input cells. Clustering values, however, are unaffected by this parameter. At no point,496

then, can the model recreate all aspects of the data by varying the weight distribution.497

Furthermore, while values of mixed selectivity and RV approach the data values with498

large σW/μW , such large values are likely unrealistic. Data show that a σW/μW ratio499

of around 1 is consistent with observations of synaptic strengths from several brain500

areas (Barbour et al., 2007).501

Varying other parameters such as the mean weight, number of cells per population,502

and connection probability similarly doesn’t allow the model to capture all properties503

of the data (not shown).504

Figure 5D shows the values of the model as compared to the data for the set of505

parameters marked with arrows in Figure 5B and 5C. For reasons that will be discussed506

more later, these parameters were chosen because they were capable of capturing the507

amount of pure selectivity in the model (any lower value of the threshold would lead508

to too few cells with pure selectivity, for example). On the left are the percentage of509

cells with different selectivities as in Figure 3C. The bars are the data and the lines510

are the model. On the right, are histograms of model values from 100 instantiations,511

with the red markers showing the data values. The model matches the average firing512
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rate and FFT of the model, as it was fit to do so. Clustering, RV, and the amount of513

mixed selectivity are too low in the model. We use these parameters as the starting514

point for learning in this model.515

3.3. Circuit Model with Hebbian Learning Captures PFC Responses516

As described above, responses of PFC cells have a set of qualities that cannot be517

explained by random connectivity. In particular, the inability of the random network to518

simultaneously capture the values of response variability, clustering, pure, and mixed519

selectivity shows that PFC cells have a balance of specialization that may require520

learning to achieve. Here, we tested two variants of Hebbian learning to determine if521

a network endowed with synaptic plasticity can capture the elements of the data that522

the random network could not. The simple form of Hebbian learning that we use is523

based on the idea that the input populations that randomly start out giving strong524

inputs to a cell would likely make that cell fire and thus have their weights increased.525

In both variants of learning tested, each cell has the weights from a subset (NL)526

of its input populations increased while the rest are decreased to keep overall input527

constant (this is done via a weight increase step and a normalization step). Such528

balancing of Hebbian and homeostatic plasticity has been observed experimentally529

(Keck et al., 2017), particularly via the type of synaptic up and down regulation used530

here (Chistiakova and Volgushev, 2009; Bourne and Harris, 2011; Scanziani et al.,531

1996; Lo and Poo, 1991). Therefore, it is plausible for an individual neuron to be able532

to implement such changes across its synapses.533

The difference between our two variants of learning comes from which input pop-534

ulations are increased. In general, the top NL input populations from which the cell535

already receives the most input have their weights increased (to capture the ”rich get536

richer” nature of Hebbian learning). In the ”constrained” variant, however, weight537

increases onto a PFC cell are restricted to populations of input cells that come from538

different task variables (e.g., cue 1 and cue 2. For a detailed explanation see Methods).539

This was done to ensure that cells had enough variety of inputs to create mixed selec-540

tivity. In the free variant, the populations from which a cell receives increased input541

due to learning are unrestricted. That is, they are determined only by the amount of542

input that the cell originally received from each population as a result of the random543

connectivity. This unrestricted form of learning is more biologically plausible as it can544

be implemented in a way that is local to the post-synaptic neuron, without knowledge545

of the identity of the upstream inputs . A toy example of each variant can be found in546

Figure 4B. In this example, free and constrained learning select different input popu-547

lations to be enhanced, however, given random weights, free and constrained learning548

will select the same input populations in some cells.549

Figure 4C shows how the weight matrix changes with different NL values (the550

number of populations from which weights are increased during learning). Eventually,551

the learning leads to a steady state in which each PFC cell receives input only from552

cells in the top NL populations. The higher the NL the faster the matrix converges to553

its final state. When NL is low, convergence takes longer as all the weight is transferred554

to a small number of cells. This plot is shown with a learning rate of .2.555

The results of both forms of learning are shown in Figure 6A. The effects of learning556

are dependent on NL, and different NL values are in different colors (NL = 1, 2, 3 are557

tested here). Free learning is shown with solid lines, and constrained with dotted lines,558

except for the case of NL = 1, where free and constrained learning do not differ and559
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only one line is shown. In each plot, the data value is shown as a small black dotted560

line.561

Clustering, mixed selectivity, and RV all increase with learning, for any value of NL562

and both learning variants. When NL = 1 (green line), mixed selectivity peaks and563

then plateaus at a lower value (as connections to all but one population are pruned),564

while other values of NL plateau at their highest values. As it was designed to do so,565

constrained learning is very effective at increasing mixed selectivity, eventually getting566

to nearly 100 percent of cells. Free learning produces more modest increases in mixed567

selectivity, with NL = 2 leading to slightly larger increases than NL = 3. Before568

learning, the model matches the data’s balance of supra- and sublinear interaction569

effects (ratio of positive to negative terms: 1.100 ± .048), and learning does not570

impact this balance (1.095 ± .053, STDs over 20 random instantiations).571

A factor impacting selectivity in this model—and especially with this task structure—572

is that cells that receive inputs from multiple populations from a single task variable573

may not end up having significant selectivity to that variable. This is especially true574

for the ’task type’ variable, as cells can easily end up with input from both ’recall’ and575

’recognition’ populations. If the inputs from these populations are somewhat similar in576

strength, the cell does not respond preferentially to either. This can help understand577

the discrepancy in how pure selectivity changes with free and constrained learning. In578

constrained learning, pure selectivity necessarily increases with learning (to the point579

where nearly all networks have 100% pure selectivity), whereas free learning can have580

inputs that effectively cancel each other out. A more direct investigation of how se-581

lectivity and other properties change with learning comes with the analysis of our toy582

model in the next two sections.583

In these plots, both noise parameters are fixed, which allows us to see how FFT584

varies with learning (this is also why the values at step 0 in Figure 6A do not always585

match those shown in Figure 5, as that model has noise parameters fit to match the586

data). The changes in FFT stem from both changes in robustness to the additive noise587

and from changes in the mean responses, which impacts FFT via the multiplicative588

noise term. Figure 6A shows that the variant of learning has less of an impact on FFT589

than NL does. In all cases, however, learning ultimately leads to lower trial variability590

in the model. This is consistent with observation made in PFC during training (Qi591

and Constantinidis, 2012).592

Overall, low NL leads to more acutely distributed weights and stronger structure593

and selectivity in the model. Constrained learning, with its guarantee of enhancing594

weights from different task variables, is also more efficient at enhancing structure595

and selectivity. The prefrontal cortex data shows a moderate level of structure and596

selectivity, therefore the approach that is best able to capture it is free learning with597

NL = 3. In Figure 6B, we show how all of the model values compare to the data as598

this form of learning progresses. These plots, similar to Figure 5B and C, show values599

in units of standard deviations away from the model. It is clear from these plots that600

this form of learning leads all values in the model closer to those of the data. The601

best fit to the data comes after 6 learning steps with a learning rate of .2 (marked602

with a black arrow). At this point the ratio of the standard deviation to the mean603

of the weight distribution has only slightly increased, remaining within a biologically604

plausible range. While the best fit to the data comes before the model reaches its steady605

state, all values still eventually plateau to within ± 2.5 model standard deviations of606

the data. Furthermore, there are many reasons why PFC may not reach steady state;607
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for example, once the animal’s performance plateaus, learning may slow (Glimcher,608

2011). Also, other uses of PFC may interfere with learning and prevent the circuit609

from overfitting to this particular task. A detailed exploration of these mechanisms is610

beyond the scope of this study.611

We plot the values of the data in comparison to the best-fit model in Figure 6C,612

similarly to Figure 5D. At this point, the average percent of cells with only pure613

selectivity is 25.4±4.2, with only mixed 4.4±2.2, and with no selectivity 15.9±4.1 (the614

comparable data values are ≈ 36%, 1%, and 13%, respectively). Thus, the model with615

learning is a much better fit to the data than the purely random network.616

In addition to matching the measured properties of the PFC representation, we617

also tested if learning makes the neural representation more conducive to decoding.618

To do this for task information, we trained linear classifiers to readout out the task619

inputs (i.e., the identities of task type, cue 1, and cue 2 separately) as well as higher620

order terms (i.e., the combined identities of task type-cue 1, task type-cue 2, cue 1-cue621

2, and task type-cue 1-cue 2). As expected from a higher dimensional representation,622

decoding performance is better in the population after learning, for both linear and623

higher order terms (Figure 6D, left). Post-learning accuracy for linear terms is 83.2%624

and for the higher-order terms 70.5% (the respective values for constrained learning625

after the same number of steps are 88.2% and 83%, not shown). We also used a626

same-different task to demonstrate how the representation after learning allows for627

better performance on a non-linearly separable problem. Here, all combinations of cue628

1 and cue 2 identities were generated as inputs, and a linear classifier was trained to629

readout if the identities of the two cues were the same or not. Trying to read this630

information out from the input population is not very successful as these cells only631

have pure selectivity (Figure 6D, right). Random connectivity is sufficient to expand632

the dimensionality of the neural representations and to solve non-linearly separable633

problems. However, the model PFC population generated from random connectivity634

performs poorly because the low threshold that we determined by fitting the model to635

the data leads to low levels of mixed selectivity. After learning, the PFC population636

performs substantially better on this task.637

3.4. Understanding Properties of Selectivity Before Learning638

We have shown that Hebbian learning can impact selectivity properties in a model639

of PFC. Some of these impacts, particularly the increase in mixed selectivity, may seem640

counterintuitive. Here we use a further simplified toy neuron model to understand the641

properties of the network before learning and then demonstrate how learning causes642

these changes.643

A schematic of this toy model is in Figure 7A, and it is described in the Methods.644

Briefly, the cell gets four total inputs–two (A and B) from each of two task variables645

(T1 and T2). The output of the cell is binary: if the weighted sum of the inputs is646

above the threshold, Θ, the cell is active and otherwise it is not. As in the full model,647

Θ is defined as a fraction, λ, of the sum of the input weights.648

This format makes it easy to spot nonlinear mixed selectivity: if the cell is active649

(or inactive) for exactly one of the four conditions, it has nonlinear mixed selectivity650

to the combination of T1-T2. If the cell’s output can be determined by the identity of651

only one task variable, it has pure selectivity (and would be active for two of the four652

conditions). Otherwise it has no selectivity (active or inactive for all conditions) (see653

examples in Figure 2A and B).654
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Learning impacts selectivity by altering the way a cell represents these four condi-655

tions. To say more about how this occurs, we must first describe the properties of the656

representation in the random network before learning.657

To be robust to noise, the cell’s response should be constant across trials within a658

condition . Additive noise can be thought of as a shift in the threshold, which may659

lead to a change in the cell’s response. Thus, trialwise additive noise drawn from660

a distribution centered on zero can be thought of as a range of effective thresholds661

centered on the original one (black dotted line in Figure 8A is the threshold without662

noise and the gray shaded area is the range of effective thresholds due to noise). If663

the inputs for a given condition fall in this range, the response of the cell will be664

noisy, i.e. flipping from trial to trial, and selectivity will be lost because the cell’s665

activity will not be a reliable indicator of the condition. Robustness to noise, then,666

can be measured as the range of thresholds a representation can sustain without any667

responses flipped, with a larger range implying higher noise robustness ( if noise is668

drawn from a Gaussian distribution the noise range can represent thresholds within669

two standard deviations, for example, implying that a cell is robust to noise as long670

as its response is consistent on 95% of trials).671

Assuming optimal threshold values (i.e., those with highest noise robustness) for672

each type of selectivity, the relative noise robustness of mixed and pure selectivity673

can be calculated (see Methods). We find that, thinking of the four conditions as the674

corners of a rectangle (as visualized in Figure 2C), mixed selectivity robustness depends675

on the length of the shorter side, while pure selectivity noise robustness depends on the676

difference between the two side lengths. We also find that, with random weights, most677

cells will have a representation that has higher noise robustness for pure selectivity678

than for mixed (see Methods).679

Noise robustness changes, however, as thresholds deviate from optimal. The type680

of selectivity cells have in the absence of noise also varies with threshold in a related681

way. For example, using a low threshold may result in more cells with mixed selec-682

tivity and/or cells with pure selectivity that have low noise robustness (see Figure 2D683

for examples). To quantify these trends, we varied the threshold parameter λ and684

determined both the probability of different types of selectivity as well as the noise685

robustness for each type (see Methods for details). In Figure 7B, we show the fraction686

of cells that lose selectivity at a given noise level, for three different values of λ. Noise687

robustness (plotted as a function of λ in Figure 7C) is defined then as a normalized688

measure of the noise value that causes 50% of cells to lose selectivity.689

Figure 7C demonstrates why the random network from which we start learning is690

necessarily in a condition of low mixed selectivity. Specifically, the value of λ we choose691

to use is constrained by the fact that the data shows high levels of pure selectivity.692

Therefore, we need a value that has high probability of pure selectivity and high noise693

robustness for it (especially because, as we will show, pure selectivity is unlikely to694

increase much with learning). Values of λ that meet this condition are not favorable695

for mixed selectivity. Therefore, the best we can do is choose a value of, for example,696

.4, where probabilities of pure and mixed selectivity are even, but pure has higher697

noise robustness (therefore effective rates of pure selectivity are higher). The fact that698

mixed selectivity is less noise robust than pure in the full model can be seen in Figure699

5A.700

Note that while the λ used for the random version of the full model shown in Figure701

5D was around .27, that value is not directly comparable to the λ values in these plots702

17



for many reasons. First, the full model has 3 task variables, compared to the 2 used703

in the toy model. This means that, from the perspective of mixed selectivity for 2704

task variables, a given λ value will create a higher Θ in the full model with 3 task705

variables than in the toy one that has only 2 (because Θ is a function of the sum total706

of all weights, not just those relevant for the 2-way selectivity). In addition, in the toy707

model, 50% of the inputs are on for any given condition, whereas the nature of the708

task in the full model means that only 25% of inputs are on when looking at C1xC2709

mixed selectivity, while one-third are on for TTxC1, TTxC2, and TTxC1xC2 mixed710

selectivity. The percentage of cells are also not directly comparable, as cells in the full711

model are labeled as pure if they have any of 3 different types of pure selectivity, and712

mixed if they have any of 4 different types of mixed. This toy model is thus meant to713

provide intuition only.714

3.5. How Learning Impacts Selectivity715

For the reasons just discussed, the random model starts in a regime where pure716

selectivity has high noise robustness and mixed does not. In order to match the amount717

of mixed selectivity seen in the data, we must then rely on learning to increase noise718

robustness for mixed selectivity, allowing more mixed cells to move out of the noise719

range.720

Learning impacts noise robustness by expanding the representation of the different721

conditions. An example of this is in Figure 8A, where the gray shaded area repre-722

sents the noise-induced range of the threshold. Before learning, the cell’s response is723

impacted by the noise. With learning, different conditions get pulled away from each724

other and the threshold, creating a much more favorable condition for mixed selectivity725

to be robust to noise. As can be seen, the responses are now outside the noise range.726

For the same reason that learning increases noise robustness (because the expansion727

increases the range of thresholds that support mixed selectivity), it can also increase728

the probability of a cell having mixed selectivity in the absence of noise. This can729

be seen in Figure 8C (left), where learning steps are indicated by increasing color730

brightness (constrained learning with rate of .25). At lower λ values, cells that are731

initially above threshold for all conditions (no selectivity) gain mixed selectivity with732

learning. But for λ values that support higher levels of pure selectivity (e.g., λ = .4,733

marked with a black dotted line), the percent of cells with mixed is not as impacted734

by learning. The percent of cells with pure selectivity increases only slightly at most735

λ values.736

Noise robustness has a different pattern of changes with learning (Figure 8C, right).737

In particular, at λ = .4, the noise robustness still increases with learning even when738

the percent of cells with mixed selectivity doesn’t change. Furthermore, when starting739

from a λ value that has unequal noise robustness for pure and mixed selectivities, if740

most cells with pure selectivity are already robust to a given noise value, an increase741

in noise robustness for pure would only have a moderate effect on the population742

levels of pure selectivity. Conversely, if most mixed cells have noise robustness less743

than the current noise value, an increase in that robustness could strongly impact the744

population. In the same vein, a decrease in robustness will impact the pure population745

more than the mixed. Thus, changes in noise robustness seem to play a large role in746

the increase in mixed selectivity observed in the full model.747

In particular, constrained learning with NL = 2 always increases the lengths of748

both sides of the rectangle (as one weight from each task variable increases and the749
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other decreases). As mentioned above, noise robustness for mixed selectivity scales750

with the length of the shorter side and so it necessarily increases with learning in this751

condition. Under certain weight conditions, noise robustness will also increase for cells752

with pure selectivity (this can be seen in Figure 8C, see Methods for details).753

If NL = 1, only one side length will increase and the other decrease. If the shorter754

side decreases, mixed selectivity noise robustness decreases. If the shorter side in-755

creases, mixed noise robustness increases, up until the point at which side lengths756

are equal. At that point the shorter side is now the decreasing side and mixed noise757

robustness goes down. This trend is reflected in the shape of the mixed selectivity758

changes seen with NL = 1 in Figure 6A (mixed selectivity increases then decreases).759

When using free learning (with NL = 2), a portion of the cells will by chance760

have the same changes as with constrained learning. The remaining cells cause the761

differences observed between the two versions of learning, and can be of two types.762

In the first type, the larger side length increases and the smaller shrinks, causing a763

decrease in mixed noise robustness. Free learning doesn’t achieve the same levels of764

mixed selectivity as constrained because these cells continue to be too noisy. In the765

other type, the shorter side increases and the larger decreases, reducing the difference766

between the two side lengths and thus reducing pure noise robustness. Free learning767

loses pure selectivity as these cells become too noisy (as seen in 6A). More detailed768

descriptions of changes with learning can be found in the Methods.769

Inputs from additional task variables can be thought of as a source of noise as well.770

In Figure 8B, we add a third task variable to the toy model. Now, in the case of the771

T1B-T2A condition, the identity of T3 determines if the cell is active or not. From772

the perspective of T1-T2 mixed selectivity, this has the same impact as shifting the773

threshold, and thus creates noise. If both T3 inputs are weaker than the strongest774

two inputs from T1 and T2 (as they are here), they will decrease with learning. This775

means that not only do different T1-T2 conditions get pulled apart with learning, but776

the same T1-T2 conditions become closer. This reduces the impact of ”noise” from777

other task variables, and explains why mixed selectivity increases more with NL = 2778

than with NL = 3 (Figure 6A).779

In sum, learning changes a cell’s representation of the task conditions. Depending780

on the threshold value, this can create changes in the probability of mixed and pure781

selectivity and the relative noise robustness for each. Here, in order to match the782

high levels of pure selectivity seen in the data, we use a threshold regime where mixed783

selectivity noise robustness increases with learning. This causes a gain in the number784

of cells with mixed selectivity, such that it reaches the level seen in the data.785

3.6. How Learning Impacts Other Properties786

The visualization of this toy model gives intuition for why other properties change787

with learning as well. RV, for example, increases with learning (Figure 6A). The ex-788

pansion that comes with learning places different conditions at different distances from789

the threshold. With a sigmoidal nonlinearity, this would translate to more variance in790

the responses across conditions, increasing RV. Because constrained learning ensures791

the most expansion, it increases RV more. These increases depend on NL because792

lower NL allows for a more extreme skewing of weights, and thus a subset of condi-793

tions will be far above threshold while the rest are below (leading to a high RV). RV794

has a limit, however, because even with NL = 1, the cell would still respond equally795

to a quarter of the conditions (assuming an input from a cue variable)796
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Clustering values are also impacted by how selectivity changes. Clustering in the797

data appears to be driven by task type selectivity (Figure 3C), and as task type798

preferences develop in the model the clustering value increases. Here, the relative sizes799

of the input populations play a role. Because the input populations that represent task800

type contain more cells (Figure 4A), these populations are more likely to be among801

the strongest inputs to a cell, and thus have their weights increased (Note that this802

bias in favor of task type could also arise from the fact that only two task types are803

possible, and thus these inputs are on twice as often as cue inputs. Such a mechanism804

cannot be implemented in this model, however, so we use uneven numbers of input805

cells). Therefore, task type selectivity becomes common and clusters form around806

the axis representing the first regressor (which captures task type preference). This807

effect is weaker with free learning because both task type populations may have their808

weights increased, which diminishes the strength of task type preference. Lower NL,809

which minimizes preferences to other task variable identities, allows these clusters to810

be tighter.811

Finally, it is important to note that the strength of inputs shown in Figures 2812

and 8 (the colored arrows) correspond to, in the full model, the summed input from813

all cells representing a given task variable identity (i.e., Ipi ), not just to weights from814

individual cells. These summed values are what need to change in order to expand the815

representation and see the observed changes. This is important for why the Hebbian816

procedure described here is effective at changing selectivity, as it assumes that many817

cells, acting in unison to cause post-synaptic activity, would lead to the increase of their818

individual synaptic weights, and thus an increase in the sum of those weights. Merely819

increasing the variance of the individual weights does not cause such a coordinated820

effect and would be less effective at driving these changes (as was shown in Figure 5C),821

especially with larger input population size.822

4. Discussion823

Here, motivated by several theoretical proposals about properties that would ben-824

efit encoding, we explored how prefrontal cortex represents task variables during a825

complex task. In particular we were interested in measures of selectivity (particularly826

nonlinear mixed selectivity), response density, and clustering of cell types according827

to preferences. By quantifying and measuring these properties in a PFC dataset, this828

work connects theoretical literature with experimental data to give insight into how829

PFC is able to support complex and flexible behavior. Furthermore, we explored how830

these response properties could be generated by a simple network model. Through831

this, we find evidence that the particular level of specialization and structure in the832

PFC response is not readily achievable in a random network without Hebbian learning.833

After Hebbian learning, the model—despite its relative simplicity—is able to capture834

many response properties of PFC. The changes that come with learning act via an835

expansion of the way cells represent conditions, and corresponding changes in noise836

robustness.837

Interestingly, the variant of Hebbian learning that best matches the data is not the838

most effective at increasing mixed selectivity. It may be that the more effective method839

(”constrained” learning) would be too difficult to implement biologically, but perhaps840

there is also a computational benefit to the balance of mixed and pure selectivity found841

in the data. Particularly, preventing high levels of selectivity to this particular task842

may allow the network to retain flexibility.843
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In addition to retrospectively matching experimental results, this model also makes844

predictions regarding how certain values should change with training. In particular,845

clusters of cells defined by selectivity are expected to emerge with training and cell846

responses should become less dense across conditions. Previous work (Rigotti et al.,847

2013) has shown the value of mixed selectivity for the ability of a population to per-848

form complex tasks. This work shows that mixed selectivity increases with learning,849

and these changes in PFC may correspond to increases in performance (Pasupathy850

and Miller, 2005), as learning in our model leads to increases in performance on clas-851

sification tasks. Perhaps surprisingly, this model also predicts a concurrent, though852

small, decrease in pure selectivity. However, studies that have tracked PFC responses853

during training show signs of these changes. For example, in (Meyer et al., 2011),854

the amount of pure selectivity was measured directly pre- and post-training, and a855

significant drop in the percent of cells with pure selectivity was indeed observed. Fur-856

thermore, in hippocampus, an increase in mixed selectivity and slight decrease in pure857

was also observed with learning (Komorowski et al., 2009). In Meyers et al. (2012), the858

ability to readout match/nonmatch of two input stimuli from the population increases859

dramatically with learning, suggesting an increase in mixed selectivity. However, the860

ability to decode the identity of the stimuli (in the comparable portion of the trial)861

decreases slightly after training, which would be at odds with our linear classification862

results.863

Our model makes many simplifying assumptions. The inputs, for instance, are864

binary cells that encode only the identity of different task variables. While this implies865

that the cells representing cue identities already have mixed selectivity (responding to866

the combination of the image and its place as either cue 1 or cue 2), it is still an867

assumption that the cells providing input to PFC are otherwise unmixed. This is868

something that, given current experimental evidence seems plausible (Pagan et al.,869

2013), but would benefit from further experimental exploration.870

It may seem possible that adding more layers to the network would be a way871

to get the model to match the data without the need to introduce learning. This,872

however, is unlikely. For one, the data has high levels of pure selectivity which would873

be difficult to maintain through layers of random connections. Mixed selectivity, too,874

could decrease with layers, especially if each layer is noisy (which would be the realistic875

way to build such a model). It is also not obvious how such a model would achieve876

the clustering values observed in the data. Preliminary work on multi-layer models877

supports these intuitions (not shown). Also, such a model would not be able to address878

the changes with training discussed above. Finally, such a model would necessarily879

contain more parameters than a single layered network, and that would need to be880

taken into account when comparing to our learning model, which only introduces two881

additional parameters (NL and the amount of learning, defined by the combination of882

learning rate and number of steps).883

Another valuable endeavor would be to expand this model in the temporal domain.884

Currently in the model, all the task variable inputs are given to the network simulta-885

neously. In the experiment, of course, there is a delay between cue 1 and cue 2. Delay886

activity is known to exist in areas like IT (Woloszyn and Sheinberg, 2009; Fuster and887

Jervey, 1982), and so this information could be being feed into PFC at the same time.888

But presumably, recurrent connections in PFC, and even possibly between PFC and889

its input areas, can enhance or alter selectivity. A recurrent model could also explore890

how PFC responses and representation vary over the time course of the trial, as recent891
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experimental work has provided insight on this (Murray et al., 2016). Interestingly,892

recent work has demonstrated that Hebbian learning can be used to train recurrent893

neural networks on context dependent tasks (Miconi, 2017).894
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Figure 1: Description of prefrontal cortex data and relevant measures of selectivity A.) Task Design. In both
task types, the animal fixated as two image cues were shown in sequence. After a delay the animal had to either
indicate that a second presented sequence matched the first or not (”recognition”) or saccade to the two images
in correct order from a selection of three images (”recall”). B.) What nonlinear mixed selectivity can look like
in neural responses and its impact on computation. The bar graphs on the left depict three different imagined
neurons and their responses to combinations of two task variables A and B. The black neuron has selectivity
only to A, as its responses are invariant to changes in B. The blue neuron has linear mixed selectivity to A and
B: its responses to different values of A are affected by the value of B, but in a purely additive way. The red
neuron has nonlinear mixed selectivity: its responses to A are impacted nonlinearly by a change in the value of
B. The figures on the right show how including a cell with nonlinear mixed selectivity in a population increases
the dimensionality of the representation. With the nonlinearly-selective cell (bottom), the black dot can be
separated with a line from the green dots. Without it (top), it cannot. C.) A depiction of measures of trial-
to-trial noise (FFT ) and the distribution of responses across conditions (RV). The x-axis labels the condition,
each dot is the firing rate for an individual trial and the crosses are condition means used for calculating RV
(data from a real neuron; recognition task not shown). D.) Conceptual depiction of the clustering measure.
Each cell was represented as a vector (blue) in a space wherein the axes (black) represent preference for task
variable identities, as determined by the coefficients from a GLM (only three are shown here). The clustering
measure determines if these vectors are uniformly distributed.

Figure 2: Signal and noise representation for the toy model shown in Figure 8A. Strength of weights from the
4 input populations are given as arrows in (A and B) and the threshold for the heaviside function is shown as
a dotted line. The cell is active for conditions above the threshold (green). Weight arrows omitted for visibility
in (C and D). A.) Learning causes the representation of conditions to change. This can change selectivity in
multiple ways. Shown here: pure selectivity turns into mixed selectivity (top) and mixed selectivity turns into
pure (bottom). B.) Constrained and free learning can lead to different signal changes. Constrained learning
(top) guarantees that one population from each task variable is increased. This ensures that the representation
spreads out. In this case, the cell goes from no selectivity to mixed selectivity. With these starting weights,
free learning increases both populations from T2, and the cell does not gain selectivity. C.) Noise robustness
can be thought of as the range of thresholds that can sustain a particular type of selectivity. Relative noise
robustness of mixed and pure selectivity depends on the shape of the representation. α is the ratio of the
differences between the weights from each task variable (top). In the two figures on the bottom, blue (red)
dotted lines show optimal threshold for pure (mixed) selectivity and shaded areas show the range of thresholds
created by trialwise additive noise that can exist without altering the selectivity. When α < 2, mixed selectivity
is robust to larger noise ranges (bottom left). When α > 2, pure selectivity is more robust (bottom right).
Given normally-distributed weights, α > 2 is more common. D. Two example cells showing how selectivity
changes with changing λ. Sets of weights for both cells are drawn from the same distribution. The resulting
thresholds at 3 different λ values (labeled on the right cell but identical for each) are shown for each cell. With
the smallest λ, neither example cell has selectivity. With the middle λ value Cell 1 gains mixed. Cell 2 gains
pure selectivity, which it retains at the higher λ, while Cell 1 switches to the other type of mixed

Figure 3: Results from the experimental data. A.) Selectivity profile of the 90 cells analyzed. A cell had pure
selectivity to a given task variable if the term in the ANOVA associated with that task variable (TT=Task
Type, C1=Cue 1, C2=Cue 2) was significant (p<.05). A cell had nonlinear mixed selectivity to a combination
of task variables if the interaction term for that combination (TTxC1=Task Type x Cue 1, TTxC2=Task Type
x Cue 2, C1xC2=Cue 1 x Cue 2, TTxC1xC2=Task Type x Cue 1 x Cue 2) was significant. On the right of
the vertical bar are the percent of cells that had at least one type of pure selectivity (blue) and percent of cells
that had at least one type of mixed selectivity (red). B.) Values of firing rate, FFT , and RV for this data.
Each open circle is a neuron and the red markers are the population means. C.) Beta coefficients from GLM
fits for each cell. The condition wherein Task Type = Recognition, Cue 1 = A, and Cue 2 = B was used as the
reference condition . These values were used to determine the clustering value D.) Clustering values for data
and comparison populations. The red dot shows the clustering value calculated using the GLM coefficients
from the data. The shuffled data comes from shuffling the GLM coefficients across cells. The clustered data
derives from populations of fake cells designed to have 3 different categories of cell types defined according to
selectivity.
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Figure 4: The full model and how learning occurs in it. A.) The model consists of groups of binary input
neurons (colored blocks) that each represent a task variable identity. The number of neurons per group is given
in parenthesis. Each PFC cell (gray circles) receives random input from the binary cells. Connection probability
is 25% and weights are Gaussian-distributed and non-negative. The sum of inputs from the binary population
and an additive noise term are combined as input to a sigmoidal function (bottom). The output of the PFC
cell on a given trial is a function of the output of the sigmoidal function, r and a multiplicative noise term (see
Methods). The threshold, Θ, is given as percentage of sum total of the weights into to each cell B.) Two styles
of learning in the network, both of which are based on the idea that the input groups that initially give strong
input to a PFC cell have their weights increased with learning (sum of weights from each population are given
next to each block). In free learning, the top NL input populations are chosen freely. In this example, that
means two groups from the cue 1 task variable have their weights increased (marked in blue). In constrained
learning, the top NL populations are chosen with the constraint that they cannot come from the same task
variable. In this case, that means that cue 2D is chosen over cue 1C despite the latter having a larger summed
weight. In both cases, all weights are then normalized. C.) Learning curves as a function of learning steps for
different values of NL. Strength of changes in the weight matrix expressed as a percent of the sum total of
the weight matrix are plotted for each learning step (a learning step consists of both the weight increase and
normalization steps). Different colors represent different NLs.

Figure 5: Results from the model without learning. A.) FFT and other measures can be controlled by the
additive and multiplicative noise parameters. Each circle’s color shows the value for the given measure averaged
over 25 networks, for a set of a andm values (see Methods). FFT scales predictably with both noise parameters.
Fraction of cells with mixed selectivity, fraction of cells with pure selectivity, and clustering scale inversely with
the noise parameters. Other model parameters are taken from the arrow locations in (B) and (C). B.) How the
threshold parameter, λ, affects measures of selectivity. Lines show how the average value of the given measure
in the model (in units of standard deviations calculated over 100 random instantiations of the model) differs
from the data as a function of the threshold parameter λ, where Θi = λΣjwij At each point noise parameters
are fit to keep FFT close to the data value. Note that std values for mixed selectivity and clustering remain
steady across threshold values at approximately 4% and 20.7 respectively. RV std however increases from .0087
to 4.3 spikes/sec and pure selectivity std trends toward zero as all cells gain pure selectivity. C.) Same as (B),
but varying the width of the weight distribution rather than the threshold parameter. Here, RV std increases
only slightly, from .02 to .048 spikes/sec, pure selectivity std decreases slightly from 4.0% to 2.5% and mixed
selectivity and clustering stds remain fairly constant around 4.9% and 31.2 respectively. D.) Example of the
model results at the points given by the black arrows in (B) and (C). On the left, blue and red bars are the data
values as in Fig 2. The lines are model values (averaged over 100 networks, errorbars ±1 std). On the right,
histograms of model values over 100 networks. The red markers are data values. This model has no learning.

Figure 6: The model with learning. A.) How selectivity measures change with learning. In each plot, color
represents NL value, solid lines are free learning, and dotted lines are constrained learning (only one line is
shown for NL = 1 as the free and constrained learning collapse to the same model in this circumstance). Step
0 is the random network. Black dotted lines are data values and errorbars are ±1 std over 100 networks. In the
pure selectivity plot, with constrained learning and when NL = 1, the value maxes out at 100% in essentially all
networks, leading to vanishing errorbars. B.) All measures as a function of learning for the NL = 3 free learning
case. Values are given in units of model standard deviation away from the data value as in Figure 5B and C.
C.) The model results at the learning step indicated with the black arrow in (B). On the left, blue and red
bars are the data values as in Figure 3. The lines are model values (averaged over 100 networks, errorbars ±1
std). On the right, histograms of model values over 100 networks. The red markers are data values. Here, the
model provides a much better match to the data. D.) Decoding performance increases with learning. Average
performance of classifiers trained to readout linear terms (top left) and higher order terms (bottom left) from
PFC population activity increases after learning compared to the random network (learned model indicted by
arrow in (B)). Errorbars are ± 1 SEM, over 10 random instantiations of the network. Read out of same vs.
different cue identities is better when using the PFC population after learning (right).
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Figure 7: How noise robustness varies with threshold in a random network using the toy model A.) Schematic
of the toy model: four input populations (two from each task variable) send weighted inputs to a cell with a
threshold (Θ) nonlinearity B.) For a given noise value, the fraction of cells that would lose selectivity if that
noise value were used. Values are separated for cells with pure (blue) and mixed (red) selectivity. Three λ
values shown, where Θ = λΣW . C.) Based on plots like those in (B), the noise value at which 50% of cells have
lost selectivity is calculated (”Noise Robustness” refers to these values normalized by the peak value. Higher
values are better) and plotted as a function of λ (solid lines). On the same plot, the percent of cells with each
type of selectivity in the absence of noise is shown (dotted lines). The black doted line marks a λ value at
which the probability of mixed and pure selective cells is equal, but their noise robustness is unequal. This plot
is mirror-symmetric around λ = .5

Figure 8: How learning impacts noise robustness A.) A simple toy cell (left) with 2 task variables is used to
show the effects of learning. The 4 possible conditions are plotted as dots (green if above threshold, black if
not), with the threshold as a dotted black line. Colored arrows represent the weights from each population.
Before learning (middle), the cell’s input on two of the conditions falls within the range of the shifting threshold
created by additive noise (gray area). After learning, all conditions are outside the noise range. B.) A third
task variable is added to the model and is another source of additive noise from the perspective of T1-T2
selectivity. The model’s outputs are color-coded according to which T3 population is active. Weight arrows
are omitted for visibility. After learning with NL = 2, input strength from T3 populations are decreased and
the points from the same T1-T2 condition are closer together (less noisy). C.) How the percent of cells with a
given selectivity (left) and their noise robustness (right) change with constrained learning as a function of the
threshold parameter λ. Learning steps are symbolized by increasing color brightness (the darkest line is the
random model as displayed in Figure 7C, and the dashed line shows where the percent of mixed and pure are
the same in the random model)
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