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Gamma and beta bursts during working memory
readout suggest roles in its volitional control
Mikael Lundqvist1, Pawel Herman2, Melissa R. Warden 1,3, Scott L. Brincat1 & Earl K. Miller1

Working memory (WM) activity is not as stationary or sustained as previously thought.

There are brief bursts of gamma (~50–120 Hz) and beta (~20–35 Hz) oscillations, the former

linked to stimulus information in spiking. We examined these dynamics in relation to readout

and control mechanisms of WM. Monkeys held sequences of two objects in WM to match to

subsequent sequences. Changes in beta and gamma bursting suggested their distinct roles. In

anticipation of having to use an object for the match decision, there was an increase in

gamma and spiking information about that object and reduced beta bursting. This readout

signal was only seen before relevant test objects, and was related to premotor activity. When

the objects were no longer needed, beta increased and gamma decreased together with

object spiking information. Deviations from these dynamics predicted behavioral errors. Thus,

beta could regulate gamma and the information in WM.
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Sustained spiking activity has been the dominant neural
model of working memory (WM)1–5. The idea is that
neurons, once activated by a stimulus, keep spiking, main-

taining the representation of that stimulus. However, closer
examinations of local field potentials (LFPs) that reflect coordi-
nated population activity have revealed that complex dynamics
underlie sustained LFP activity in the trial averages. In single
trials, there are brief, discrete narrow-band oscillatory bursts in
the gamma and beta bands6. The gamma bursts (~50–120 Hz) are
tied to spiking carrying information about the remembered items.
Beta bursts (~20–35 Hz) are associated with suppression of both
informative spiking and gamma. These data are consistent with a
model in which gamma-associated spiking stores memories by
short-term changes in synaptic weights7. In this model, multiple
items can be held in WM without mutual interference because
gamma bursts active at different times store different items (time-
division multiplexing).

It is unknown how working memory is controlled; how
information is selectively encoded, read out, and forgotten when
no longer needed. Here we investigated correlates of non-
stationary dynamics in such control. Our model suggests that
gamma should be correlated with spike information irrespective
of the functional context, i.e., during encoding, maintenance, and
readout. Gamma bursting should therefore increase and beta
drop when WM is accessed. This is difficult to test in many
experimental paradigms because readout often coincides with a
behavioral response, hence adding a confounding or obscuring
motor component. Thus, we turned to multiple-electrode data
from a previously published experiment with a unique design8, 9.
Monkeys determined whether a test sequence of two objects
matched a sample sequence presented seconds earlier. They
responded only after the full test sequence. Thus, we could
examine WM readout and the animals’ evaluation of the first test
object independent of motor activity.

As predicted, we found a ramping of gamma bursting in
anticipation of WM readout. This was coupled with an increase in
information specifically about the to-be-tested object and a
decrease in beta at recording sites carrying information. Further,

the use of a test sequence revealed that these readout dynamics
only occurred when test objects were behaviorally relevant, sug-
gesting volitional control. Consistent with this view, gamma and
beta showed different dynamics for different types of match/non-
match decisions (identity, order) and did so in a way that pre-
dicted different types of errors the animals could make. This lends
support for the hypothesis that discrete oscillatory dynamics
underlie maintenance, readout, and control of working memory.

Results
Task design. On each trial (Fig. 1; Methods section), two sample
objects were presented sequentially, separated by a 1 s delay.
Then, after another delay, there was a sequence of two test
objects, separated by a 1 s delay. If the identity and order of
objects in the test sequence matched that of the sample sequence,
animals were rewarded for releasing a bar. If the test sequence did
not match, instead, monkeys had to maintain fixation and wait
for a second, always matching test sequence. Upon the bar release
following the second sequence, the monkeys received a juice
reward (overall performance was 95.5%).

Information encoding correlate with gamma not beta bursts.
As in prior work6, we found that LFPs, (n = 188 electrodes with at
least one spiking neuron) recorded in prefrontal cortex (PFC;
Supplementary Fig. 1) showed bursts of gamma and beta oscil-
lations (Fig. 2). These gamma and beta oscillations were broad-
band and persistent over time in the trial-averaged data.
However, as before6, on single trials there were actually brief
narrow-band oscillatory bursts of varying central frequency
(Fig. 2c, d; see also Supplementary Fig. 2 for summary statistics).
The burst dynamics was highly variable across trials (Supple-
mentary Fig. 3 showing gamma bursting for all trials of a single
electrode), with brief high-power events that were only weakly
correlated across trials (see Supplemental Text 1 and Supple-
mentary Fig. 4 for an investigation of non-stationary nature of
gamma). The rate of bursts (Fig. 3; Methods section) and their
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Fig. 1 Experimental setup. The animals held a bar and fixated at the center of the screen throughout the task. Two sample objects (sample 1 and sample 2)
were presented (500ms), separated by a delay (1000ms; S1–S2 delay). After another delay (1000ms; two-object delay), a test sequence of two objects
appeared (test 1 and test 2), separated by a 1000ms delay (T1–T2 delay). The animals were trained to release the bar after the second test object only if
both the identity and the order of the test objects matched the sample sequence. When the sample and test sequences did not match, the animals had to
wait for the subsequent (always matching) test sequence to release the bar. Reused and modified with permission from8
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central frequency (Supplementary Fig. 2) were modulated over
time, as seen in the trial averages.

Beta and gamma were anti-correlated over time
(Figs. 2a–d, 3a–d). When gamma was high, beta was low, and
vice versa. All recording sites showed beta oscillations that were
elevated during fixation and in memory delays, and suppressed
during object presentations (Fig. 3b). The majority of recording
sites (160/188; p< 0.05) also exhibited increased gamma bursting
when beta oscillations were suppressed (Fig. 3a, “gamma
modulated” in red vs “non-gamma modulated in blue). Figure 3b
illustrates the average beta burst rate at the gamma-modulated
sites vs non-gamma-modulated sites. The beta modulation was
significantly more pronounced at the gamma-modulated sites
(red lines) than the non-gamma-modulated sites (blue lines). Beta
bursting was lower during stimulus presentations and higher
during delays at gamma-modulated relative non-modulated sites
(Fig. 3b: p< 0.0001, S1–S2 delay: p = 0.005, S2: p< 0.0001, two-
object delay: p = 0.011, two-sided permutation test). Thus,
recording sites that had the strongest gamma modulation also
showed the strongest beta modulation, but in opposite direction
(across sites stimulus-induced (stim/pre-stim) beta and gamma
were anti-correlated: rho = −0.57, p< 1e−16, Spearman’s rank
correlation, n = 188; Supplementary Fig. 1, Supplementary
Fig. 5c).

Modeling work predicted that gamma bursting (and suppres-
sion of beta) correlates with information in neuron spiking7. As
in the previous study6, we first investigated whether gamma
bursts were associated with spiking that carried information
about the objects (informative spiking) at each site. For each
isolated neuron, we measured information about the two sample
objects by calculating the percentage of explained variance (PEV,
Methods section) by object identity. Figure 3c shows the PEV
averaged across all recording sites with at least one informative
neuron (“informative sites”, 130/188). The PEV from gamma-
modulated sites (red lines) was similar in strength and followed
the same dynamic as that of the PEV from the informative sites

(green lines). This was in contrast to spiking at non-gamma-
modulated sites (blue lines) that carried virtually no information
about the sample objects. The informative sites were strongly
overlapping with the gamma-modulated sites (p< 6e−6, Fisher’s
exact test for contingency between gamma-modulated and
informative sites; Supplementary Fig. 1, Supplementary Fig. 5).
Therefore, informative sites had very similar beta and gamma
burst rates as gamma-modulated sites (Fig. 3d, e) with stronger
burst rate modulation during samples and delays than on the
non-informative sites (for PEV in burst rates, see Supplementary
Fig. 6 and Supplementary Note).

While most recorded sites showed gamma modulation at
sample onset, there was a wide distribution in modulation
strength. Information in spiking (maximum PEV during the
sample or delay period; for sample and delay independently see
Supplementary Fig. 5) correlated positively with stimulus-induced
gamma (Supplementary Fig. 5; rho = 0.49, p< 1e−16, Spearman’s
rank correlation, n = 251. Informative neurons only: rho = 0.42, p
= 2.5e−16, n = 187) and negatively with suppressed beta (rho =
−0.44, p< 1e−16, Spearman’s rank correlation, n = 251. Informa-
tive neurons only: rho = −0.35, p = 4e−12, n = 187) during sample
presentations. Thus informative sites tended to be the gamma-
modulated sites with the strongest modulation of gamma (and
suppression of beta). On the informative sites, gamma and beta
bursting was anti-correlated over time (r = −0.40, p< 9e−14, n =
130, t-test with the null hypothesis for the mean r = 0 over sample
and delays epochs combined), whereas on non-informative sites
there was no correlation over time (r = 0.08, p = 0.12, n = 58). This
is congruent with earlier findings suggesting that prefrontal beta
and gamma are more modulated during task performance
compared to passive fixation10.
In conclusion, as found previously6, there seemed to be a tight

relationship between gamma modulation by sample object
presentation and spiking that was informative about those
objects. Since the gamma appeared in narrow-band bursts, it
was unlikely to originate from the spectral contribution of spiking
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per se. In addition, there were no significant differences in
average spiking rates between gamma-modulated and non-
gamma-modulated sites (Supplementary Fig. 7). However,
spiking at gamma-modulated sites showed a similar temporal
profile as the gamma bursting, suggesting a mechanistic
relationship.

Gamma bursts correlate with information on single trials. We
next investigated the relationship between bursting, spiking, and
information on single trials (for details see Supplemental Text).
During the first delay, spiking was elevated inside gamma bursts
(p< 0.0001, n = 146, Wilcoxon rank test) and significantly sup-
pressed during beta bursts (p = 0.004, n = 146; Wilcoxon rank
test). Further, stimulus information in spiking (PEV) was sig-
nificantly higher inside than outside gamma bursts (p = 0.02, n =
146, Wilcoxon rank test). The spike rate variance was elevated

during gamma bursts (p< 0.0001, n = 146, Wilcoxon rank test)
and reduced during beta bursts (p = 0.05, n = 146, Wilcoxon rank
test) but not PEV (p = 0.14, n = 146, Wilcoxon rank test). These
effects collectively suggested that gamma bursts corresponded to
brief episodes of elevated spiking/information and beta bursts to
reduced spiking. While the beta burst rate was elevated in delays
and higher on informative than on non-informative sites (Fig. 3e,
compare green and light blue lines: non-informative vs infor-
mative sites, S1–S2 delay: p = 0.001, two-object delay: p = 0.04,
two-sided permutation tests), spiking information was correlated
with gamma bursts also in delays. The temporal occurrence of
gamma bursts on a particular site was only weakly correlated
across trials, but gave rise to a unique trial-averaged temporal
profile per site (Supplementary Note).

It has been observed that individual neurons carry information
only transiently during delays10–12. We investigated whether the
temporal profile of information in spiking correlated with the
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temporal profile of gamma bursting at the same recording sites, as
suggested by our single-trial analysis above. This would explain
how delay information could be associated with gamma even
though beta bursting was on average elevated during delays. We
found that information on a single-neuron level was positively
correlated with gamma bursting across time (r = 0.23 in both
delays, p< 0.00001, t-test, including neurons with significant
delay information, n = 146) and uncorrelated with beta bursting
(r = −0.07 in first delay, p = 0.06, r = 0.01 in second delay, p = 0.73,
n = 146) during delays. Within the population of informative
neurons, most had low PEV values, while a small population was
highly informative (Fig. 4). The correlation between gamma burst
rates and information over time during delays was driven by this
group of highly informative neurons that tended to be strongly
correlated with gamma (Fig. 4). In addition, firing rates of the
delay-selective neurons were correlated with gamma (r = 0.32, p
< 1e−13, n = 146) and weakly anti-correlated with beta (r = −0.10,
p = 0.05, n = 146).

Post-trial beta bursting as a mechanism for WM reallocation.
We analyzed the post-trial period when the animals were no
longer restricted to maintain central fixation. We found elevated
rates of both beta and gamma bursting (Fig. 3a, b, d, e). This
elevated bursting could have been generated by motor and sen-
sory events. However, a comparison of post-trial burst rates
between informative and non-informative sites yielded significant
differences, which could not be explained by such events. Post-
trial gamma bursting (Fig. 3a, d) was now higher in the non-
informative compared to the informative sites (p< 0.0001, two-
sided permutation test). In contrast, post-trial epoch beta bursting
in informative sites was high (Fig. 3e, between 5 and 6 s), whereas
beta in non-informative sites was relatively suppressed (p<
0.0001, two-sided permutation test). In fact, the most pronounced
difference between informative and non-informative sites at any
time and frequency was this elevation of beta bursting in infor-
mative sites after the end of each trial (Fig. 3f, Supplementary
Fig. 7b). During this time, information about the objects (which
was no longer needed) dropped (compare dotted green line at 3
and 6 s in Fig. 3c. Average T2/S2 PEV in the first 1 s following T2

offset compared to average S2 PEV following S2 offset, p<
0.0001, n = 146, two-sided permutation test).

Gamma ramp-up reflects information read out. We next
investigated readout from WM. There was a ramp-up of gamma
bursting just before presentation of the first (T1; p< 0.0001,
Fig. 3a, d) and second test object (T2, p< 0.0001, informative
sites, n = 130, two-sided permutation test on informative sites, n
= 130. For all comparisons here, ramp-up was evaluated com-
paring statistics between two 300 ms epochs separated by 100 ms
to avoid smoothing between the following intervals: 300–600 ms
and 700–1000ms of the delay). The ramp-up was especially
pronounced for gamma on informative sites (Fig. 3d, green line).

Objects were tested one by one, in a sequence. Information
only ramped up for the sample item that was about to be tested,
i.e., information about the identity of the first sample object
ramped up before the first test object, and information about the
second sample object ramped up before the second test object
(Fig. 3c; Supplementary Fig. 8, PEV about S1 before T1, p = 0.003.
PEV about S2 before T2, p = 0.0005, permutation test, n = 188).
For objects in the sequence that were not relevant for the
upcoming test, there was instead a non-significant decreasing
trend (PEV about S2 before T1, p = 0.37; PEV about S1 before T2,
p = 0.29, permutation test, n = 188). To investigate this further, we
sorted neurons by when in the delays they carried information
(Fig. 5). If a sample was not the one being tested next (e.g., the
second sample object in the delay before the first test object),
neural information about that object was evenly spread over the
delay (Fig. 5a, c, d). For objects about to be tested, instead,
selective neurons tended to show a peak in PEV just before the
test (Fig. 5b, e), creating a ramp-up on the population level.
Correspondingly, there was a strong correlation between gamma
and spike rate ramp-up (T1: rho = 0.383, p< 1e−5; T2: rho =
0.441, p< 1e−7, n = 146, Spearman’s rank correlation), without a
significant correlation between gamma and PEV ramp-up on a
per site basis (T1: rho = 0.053, p = 0.378, n = 35; T2: rho = 0.123, p
= 0.178, n = 37).

We interpreted the ramp-up of gamma bursting as readout of
WM in anticipation of the decision about matching vs non-
matching test stimuli. The ramp-up did not account for
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prediction of presentation of any object, only the test objects.
There was no ramping of gamma bursts (rather a non-significant
decrease prior to S2; p = 0.10, n = 130) or spiking PEV before
presentation of the first or second sample objects (Fig. 3c, d), even
though both events were predictable. In trials in which the first
test sequence did not match, it was immediately followed by a
second, matching test sequence (Fig. 1). There was no gamma
burst rate (T3; p = 0.46, T4; p = 0.23, n = 130) or spiking PEV
increase prior to these test objects (T3; p = 0.17, T4; p = 0.27, n =
188). Thus, there was a ramp-up before T1 (which had to be
evaluated but never responded to) but not before T4 (which did
not need to be evaluated but always responded to). This
associated the ramp-up with readout of sample information and
dissociated it from motor response. Finally, the motor response
was always the same (a bar release). Thus, motor activity could
not explain that information selectively about the to-be-tested
object increased.

In conclusion, gamma and beta bursting was in a push–pull
relationship, where gamma was associated with informative
spiking. Next, we investigated this dynamics following matching
and non-matching test objects.

Gamma and beta react differently to matches and non-
matches. The task required matching a sequence of two test
objects to a sequence of two sample objects. This allowed us to
examine neural activity associated with different types of non-
matching object/stimuli configurations (object order vs identity).
We focused on the first test object, T1, and the following delay
because there was no behavioral response during these epochs.

When the first test object did not match either of the sample
objects, it was termed an “object non-match”. When the first test
object matched the second sample object, it was referred to as an
“order non-match”. We found that gamma bursting during test
object presentation distinguished between a match and different

types of non-matches (Fig. 6a). During presentation of the first
test object, the gamma burst rate was lowest for a match, highest
for an object non-match, and intermediate for an order non-
match case (horizontal black lines in Fig. 6a denote intervals
when burst rates for object non-match and match were
significantly different, p< 0.05; cluster-based statistics).

By contrast, the timing of the beta bursts in the delay following
the first test object was distinctive for matching and non-
matching configurations (Fig. 6b, black line denotes significant
differences between match relative both object non-match
conditions, p< 0.05; cluster-based statistics). However, it did
not distinguish between different types of non-matches. There
was no significant difference between order and identity non-
matches. The differences in gamma bursting between conditions
were short-lived and disappeared shortly after test object
presentation. The differences in beta bursts had longer duration,
and bridged the 1-s delay to the second test object. Around T1,
there was spiking and bursting information about the samples,
the test object and its match status (Supplementary Fig. 9).

Gamma ramp-up seems to be under volitional control. Gamma
burst rate also ramped up as the presentation of the second test
object approached, but only if the first test object was a match
(and thus further readout was needed, Fig. 6a, red line). If the first
test object was either type of non-match (blue and cyan lines),
there was no gamma ramp-up (Fig. 6a). As the monkeys had to
keep fixation also for T2 regardless of whether T1 was a match or
not, this difference could not be explained by saccades. Pre-
sumably the animal could have already made its non-match
decision after the first test object did not match. Indeed, the
corresponding ramp-up of information in spiking about the
second sample occurred only if the first test object was a match
(Fig. 6e; p = 0.001, cluster-based statistics with permutation test,
n = 146). All these effects were stronger at the informative sites
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(Fig. 6a, b) than at the non-informative sites (Fig. 6c, d). The
gamma ramp-up before the second test object in match trials and
the corresponding increase in beta bursting in non-match trials
were only seen on informative sites. Non-informative sites
showed no significant differences (Fig. 6c, d). Spike rates on
informative sites displayed similar tendencies as gamma bursting,
but with no significant differences between match and non-match
conditions (Fig. 6f).

Gamma and beta reflects different types of errors. We exam-
ined trials in which the monkeys made errors in match/non-
match judgments (i.e., incorrect behavioral response after the
second test object). For this analysis, we focused on informative
sites because they showed the most robust effects (see above). We
combined both types of non-match trials (object and order) to
obtain enough incorrect trials for statistical analysis.

Figure 7 shows the average gamma and beta burst rates on
error trials to correct trials. First, we considered errors when the
first test object did not match the corresponding first sample
(Fig. 7a, c). During the first test object, the gamma burst rate on
these trials (black curve) overlapped with the gamma burst rate
from correct non-match trials (blue curve). The number of
gamma bursts was significantly different from that in correct
match trials but not from that in correct non-match trials (Fig. 7a,
bottom) during the first test. The same was true for beta bursting

(Fig. 7c). Thus, it seemed that in trials in which the monkeys
mistakenly responded “match” to a non-matching sequence, the
gamma and beta burst rates during the presentation of the first,
non-matching test object followed the “correct” trajectory (i.e., as
if the first test object was a non-match). Instead, the error seemed
to arise in the delay after the first test object. Interestingly, in that
delay period there was a ramp-up of gamma burst rate in non-
match trials with incorrect responses (black line), which closely
followed the gamma burst rate on match trials correctly executed
by the animals (red line). During the last part of the delay leading
up to the second test object, the average number of gamma bursts
in incorrect non-matching trials (Fig. 7a, bottom, black bar) was
not significantly different from correct match trials (red bar), but
it was significantly different from that in correct non-match trials.
This discrepancy between correct and incorrect trials was
reflected also in beta bursting. The second half of the delay beta
was suppressed in incorrect relative correct non-match trials, but
not significantly different from correct match trials (Fig. 7c,
bottom). In sum, when the first test stimulus was a non-match,
the gamma and beta burst rates followed the average trajectory
observed for correct identification. The error in responding
“match” seemed to occur in the second half of the delay as the
gamma and beta burst rates became more similar to the profiles
of match trials.

Next we examined trials with matching test sequences, where
the monkey failed to respond, as if the sequence did not match
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(Fig. 7b, d). In this case, the gamma burst rate in response to the
first (matching) test object (black line) virtually overlapped with
that in correct trials when the first test object was a non-match
(blue line). The number of gamma bursts during the first test
object (black bar) was not significantly different from that in
correct non-match trials (blue bar), even though the first test
object was actually a match (Fig. 7b). The number of beta bursts
was likewise significantly lower than that in correct match trials
(Fig. 7d). In the second half of the delay, leading up to the second
test, beta bursting was not statistically different from that in
correct non-match trials and significantly higher than that in
correct match trials. There was no significant difference in
gamma bursting between the incorrect (black line and bar) and
correct match (red line, bar) nor correct non-match trials (blue
line, bar). During the presentation of the second test object,
however, the error gamma burst rate was between, and
significantly different from gamma burst rates corresponding to
both correct match (red bar) and correct non-match trials (blue
bar).

Finally, we wanted to rule out the possibility that differences in
burst rates between conditions were due to shifts in baseline
power. For all intervals, shown in Fig. 7, where we tested for
significant differences in burst number between the conditions
(correct match, incorrect match and both sets of error trials), we
also tested for differences in average power during bursts
(Supplementary Table 1; Methods section). There were no
significant differences in power during beta bursts between any
conditions. For gamma there were only significant differences at
the second test, between conditions where the animals produced a
motor response in one condition but not the other. This
demonstrated that changes in burst rates were not the result of
thresholding of signals with different, tonic means. Instead, it
suggested that the behavioral correlates of matching and non-
matching test objects differed in the rate of burst occurrences.

Discussion
We analyzed LFPs and spiking activity during a sequence
working memory task8, 9. The task structure gave us insights into
neural control over working memory, as monkeys readout an
object sequence from working memory and compare it to a
sequence of test objects. The analysis was driven by predictions
from a working memory model7. We found brief gamma and beta
bursts that seemed to have different functions, confirming and
extending previous results6. Gamma bursts were temporally and
spatially linked with the expression of sensory information in
spiking during encoding and delays. The observed interaction
between timing of bursts and information on single-trials implies
that bursts did not reflect noise fluctuations. Beta bursts were
associated with suppression of gamma and suppression of object
information in spiking. Gamma and beta bursting was anti-
correlated over time, but only at recording sites where spiking
carried information about the to-be-remembered objects (infor-
mative sites). The beta and gamma interplay suggests a potential
mechanism for controlling working memory6, 7. The balance
between beta and gamma would control the level of gamma
bursting and hence, the expression of sensory information in
spiking linked to gamma. The results suggest that beta/gamma
balance is under volitional control. The balance was, along with
information, flexibly modulated by task demands absent of sen-
sory stimuli.

This was reflected in beta and gamma activity during working
memory readout and match/non-match decisions. On sites that
had information in spiking, the rate of gamma bursts ramped up,
and beta rates decreased, at the end of memory delay in antici-
pation of the comparison of the memories to the forthcoming test

objects. This was accompanied by an increase in end-of-delay
spiking that is often seen in WM tasks11–13. Here we observed it
in the absence of, and unrelated to, any forthcoming motor
response, as did Hussar and Pasternak12. Further, we found the
ramp-up in spiking carried the specific object information needed
for the immediately forthcoming decision (e.g., first sample object
information for comparison to the first test object, and so on).
The gamma/informative spiking ramp-up did not occur in
anticipation of just any expected event. Sample object presenta-
tion was also predictable, but no ramp-up was present. Thus,
gamma ramp-up coincides with working memory readout, not
anticipation of object presentations. Importantly, it did not occur
before the second test object, if the first test object was a non-
match. This rendered the whole sequence a non-match and the
second test object was no longer relevant. On these trials, there
was an increase in beta at the sites normally carrying spiking
information. Thus, the gamma and informative spiking ramp-up
was regulated depending on behavioral relevance.

These dynamics continued to play out in the comparison
between the memories and the test objects. Gamma bursting was
highest for identity non-matches, second highest for order non-
matches and lowest for matches. This reflects their relative level
of “non-matching”. It mirrors observations of changes in average
spike rate in prefrontal cortex4, 14. The changes in gamma were
then followed by changes in beta. When the first test was a match,
beta was elevated immediately after its offset. When it was a non-
match, the beta increase came later, just before the second test
object, as if preventing readout of the now irrelevant second
object. Similarly, it has been reported that prefrontal sites
showing beta to matching test stimuli respond with a shorter
latency than sites preferring non-matching test stimuli10.

Deviations from the match and non-match gamma/beta
dynamics predicted behavioral errors. When the first test object
was a non-match, initial gamma bursting reflected its non-match
status, whether or not animals made an error. The “match error”
instead crept into both gamma and beta bursting later, in the
delay between the two test objects. Then gamma and beta
bursting reached levels similar to when animals correctly identi-
fied a match. There was a gamma increase and a beta suppression.
It was as if animals expected to make decision about the second
test object. However, that was only necessary if they thought the
first test was a match. When, instead, the first test object was a
match and animals subsequently responded non-match, the error
was instead immediate. The gamma (and subsequently) beta
burst rate induced by that object was similar to non-matching,
rather than matching, test objects.

These dynamics were largely confined to sites in which the
spiking contained working memory information. The most
striking difference between informative and non-informative sites
was however after the behavioral response, in the post-trial epoch.
At informative sites, beta was particularly high and gamma low.
At this point, the memory content is no longer relevant. Thus, the
shift to activity dominated by beta may clear out working
memory in preparation for the next trial by suppressing gamma.
Indeed, at the same time, spiking information about the last
object held in working memory (the second sample/test object)
decreased dramatically, as if suppressed. Thus, taken together, the
model and our findings suggest cortical beta as a spatiotemporal
filter, dictating when and where sensory information is encoded
and retained. It has been suggested that alpha oscillations (8–14
Hz) have similar inhibitory role in sensory-motor areas in delay
match to sample tasks15. In general, sensory alpha has been
suggested as having inhibitory functions16, and it might be that
beta has a similar role but that the frequency is shifted upward in
higher-order cortex. Beta oscillations are likely produced by the
interactions between mediodorsal thalamus and prefrontal
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cortex17, 18. Thus, we hypothesize that this network might be
involved in regulating working memory activity18, while super-
ficial layers of prefrontal cortex may contain the contents itself7.

Cortical gamma has long been seen as a correlate of sensory
processing19 but the role of beta has been more elusive20–25. Beta
has been suggested as an inhibitory rhythm15, 20, 21, to be
involved in motor maintenance22, post-movement rebound23, 24

or a mechanism to preserve status quo25. The interplay between
oscillations and spiking observed here seems congruent with an
inhibitory role of beta. Increases in beta were correlated with
suppression of gamma and informative spiking. Beta was also
elevated post-trial on informative sites, when information needed
to be cleared out. This interpretation could explain why motor
beta is most pronounced after a completed movement23, 24, when
the movement plan should be forgotten. Further, in the human
ventral stream, different patterns of gamma were induced by
different visual stimulus categories, while beta was globally
reduced26. It is therefore possible that higher-order cortex added
volitional control onto mechanisms similar to those found
in visual cortex. Recent findings suggest that sensory beta may be
modulated by prefrontal cortex during spatial attention, and anti-
correlated with subsequent gamma evoked by the target27. The
beta observed in this study was in the high-beta (β2) range, and
beta oscillations in the β1 frequency band might have different
behavioral correlates28–30.

Sustained spiking has often been seen as the neural correlate of
working memory1–4. It has been modeled by attractor networks
with persistent activity5. The activity in such networks is by
definition stable to perturbations. Here the observed dynamics
was not sustained, but occurred in brief bursts. Dynamically
speaking, brief bouts of gamma and informative spiking, with
interleaved periods of silence might be a way to combine the
robustness of attractor-like activity with more flexible computa-
tions31–34. If gamma bursts correspond to periods of short-lived
attractors7, the periods of silence between them might be
opportunities for the network to evolve and weave in new
information. Time-varying signals in working memory delay
activity appears to be a hallmark of prefrontal dynamics4, 9, 34–39.
We suggest that fast transitions between brief high-power events
in gamma and beta allow for the flexible coordination of multiple
items held in working memory.

Methods
Behavioral task and data collection. We re-analyzed data from two previous
studies8, 9. For details of data collection and task structure, we refer to these studies,
but in short: the task was structured such that the animals had to compare encoded
objects sequentially to test stimuli. Each trial (Fig. 1) consisted of an encoding
phase in which two objects (out of four possible each session) were presented
sequentially, separated by a 1 s delay. The second sample object was followed by
another 1 s delay and then a sequential test phase (also containing two of the four
possible objects). The identity, as well as the order of the items in the test sequence,
had to match that of the to-be-remembered sequence for the correct response to be
‘match’. The monkeys reported a matching test sequence by releasing a bar. If the
first test sequence did not match, the monkeys had to wait for the second test
sequence (always matching) before releasing the bar and receiving a juice reward
(overall performance was 95.5% correct). This second matching test sequence was
to ensure that the animals were engaged also in the non-match trials and to remove
false positives. Throughout the whole trial, including test sequences the animals
had to fixate on a dot in the center of the screen and all items were presented in the
same location, at the fixation dot (Fig. 1). Thus, item information was not con-
founded with location information and planned saccades at any part of the task.

The data were recorded from two adult rhesus monkeys (Macaca mulatta;
monkey S, female, and monkey A, male). The animals received postoperative
antibiotics and analgesics and were always handled in accord with the National
Institutes of Health guidelines, and all procedures were approved by the
Massachusetts Institute of Technology Committee on Animal Care. For each
recording, a new set of acute electrodes (up to eight simultaneously) were lowered
through a grid. The PFC was randomly sampled without any pre-screening for
informative neurons and all isolatable neurons were kept. Supplementary Figure 1
shows the distribution of anatomical recording sites in the two monkeys. The LFPs
were recorded at a sampling rate of 1 kHz. For details please see Warden and

Miller8, as well as Warden and Miller9, in which the original data were recorded.
We used all the data of these two studies in which the animals performed the
recognition task. In one data set, Warden and Miller8, LFPs were not always
recorded with the spikes. For analysis in which we analyzed spike-field interactions,
only neurons with a simultaneously recorded LFP were included. In a smaller
subset of analysis (Fig. 5; Supplementary Fig. 8), we also included neurons missing
LFP recordings. All available LFPs (without artifacts) from both data sets were
always included.

Signal processing. At first, all electrodes without any isolatable neurons were
removed. Then, a notch filter with constant phase across a session was applied to
remove 60-Hz line noise and its second harmonic. Two methods for the LFP
spectral estimation were employed: Morlet wavelet analysis40 and multi-taper
approach with a family of orthogonal tapers produced by Slepian functions41, 42.
They yielded very similar results in terms of qualitative time-frequency content.
They also led to comparable burst extraction outcomes. For all the presented
spectrograms (except Fig. 2 where wavelets were used) and for burst analysis the
multi-taper approach was adopted with frequency-dependent window lengths
corresponding to four to eight oscillatory cycles and frequency smoothing corre-
sponding to 0.2–0.3 of the central frequency, f0, i.e., f0± 0.2f0, where f0 were
sampled with the resolution of 1 Hz (this configuration implies that one to three
tapers were used). The spectrograms were estimated with the temporal resolution
of 1 ms. On some sessions there were high-power, broadband frequency artifacts;
these sessions were discarded from further analysis.

Burst extraction and detailed estimation burst attributes. The bursts were
calculated similarly as in the previous study6 with the only difference in estimating
the reference mean and standard deviation of spectral band power. Here, the
statistics were obtained over the 10-trial-long period (the last nine plus the current
trial) to minimize the potential effects of removing true effects in trial to trial
differences in power between conditions.

The first step of the oscillatory burst identification consisted in extracting a
temporal profile of the LFP spectral content within a frequency band of interest.
We used single-trial spectrograms, obtained with multi-taper approach, to calculate
smooth estimate of time-varying band power. Oscillatory bursts were recognized as
epochs during individual trials when the respective measure of instantaneous
spectral power exceeded the threshold set as two SDs above the mean of the
respective band power over the 10-trial-long reference period, providing that they
lasted at least three oscillatory cycles (for the mean frequency of the band of
interest). To obtain a more accurate estimate of burst duration, the time-frequency
representation of the signal was extracted in the spectro-temporal neighborhood of
each burst using the multi-taper method with the aforementioned smoothing
configuration, and two-dimensional Gaussian function was fitted to the resulting
local time-frequency map. The burst length was then defined as a time subinterval
where the band average instantaneous power was higher than half of the local
maximum (half-power point) estimated using the Gaussian fit. The frequency
coordinate of the peak of the Gaussian fit was recognized as the central burst
frequency and the burst’s frequency width was defined analogously to the burst
length but in the frequency domain. For each, burst the spectro-temporal power
average was calculated and normalized with reference to the session power spectral
average within a narrow band around the central frequency of a given burst.

Finally, based on burst intervals extracted from each trial for the beta band
(20–35 Hz) and two gamma sub-band oscillations (50–90 and 80–120 Hz), we
defined for each band a trial-collective measure, called a burst rate, as the
proportion of trials where a given electrode displayed burst-like oscillatory
dynamics around the time point of interest sliding over the trial length. In other
words, a burst rate corresponds to the time-varying likelihood of a burst occurrence
on a given electrode at a specific time point in the trial (1/trial). Burst rates were
estimated for beta and gamma sub-bands. For all figures and statistics involving
gamma burst rates we used the summed burst rates of the two sub-bands. Based on
the estimated central frequency (above) each burst was exclusively assigned to one
of the two gamma bands in the case of bursts spanning both sub-bands.

Selection of informative cells/sites. The instantaneous firing rates were esti-
mated for each neuron by convolving spike trains with a Gaussian kernel (50 ms
total width). As a control for the analysis in Fig. 4, we also used spike kernels of 80
and 120 ms to match the smoothing in gamma and beta power estimates,
respectively. This yielded quantitatively very similar correlation results as the 50 ms
spike kernel. The bias-corrected PEV43, ω2, was then estimated from firing rates
with the resolution of 1 ms across trials with different stimulus dependent condi-
tions. As a result, PEV allowed for the quantification of information associated with
the modulation of firing rates (variance) of individual neurons depending on the
stimulus condition. This way, for example, we could estimate the amount of
variance-based information carried by individual neurons about the identity of the
presented object. The bias-correction minimizes the problem of non-zero mean
PEV for small sample sizes.

ω2 ¼ SSBetween groups � df ´MSE

SSTotal þMSE
;
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where MSE is the mean squared error, df the degrees of freedom, SSTotal the total
variance (across all trials), and SSBetween groups the variance between groups of trials
formed w.r.t. stimulus condition of interest. We used one-way and multi-way
ANOVA for the condition of interest to recognize informative neurons, with very
similar results. A neuron was defined as informative if the ANOVA analysis
provided statistically significant evidence (p< 0.05, Bonferroni corrected for testing
at multiple time points) for the rejection of null hypothesis, thus yielding relevant
group-dependent effects (ω2) at any time point during presentation and delay
periods. PEV information was also calculated based on the gamma and beta burst
activity using the same bias-corrected approach as for firing rates. The feature used
for estimating oscillatory burst PEV was the proportion of time within a moving
window of analysis that was occupied by a burst, estimated in each trial. Burst PEV
estimates were robust to the length of the analysis window ranging from 50 to 150
ms. In the end, the windows size was fixed to 100 ms.

Statistical methods. The majority of tests performed (all burst rate comparisons
and PEV comparisons) in this study were non-parametric due to insufficient
evidence for model data distributions. To address multiple comparisons problem,
we employed permutation, Friedman’s and Wilcoxon’s signed-rank tests where
appropriate. We also performed Pearson’s rank correlation or Student’s t-test for
non-zero mean for correlations between burst rates and PEVs. For details see
below.

Correlation. We also estimated the correlations between the measures of time-
varying spectral band content, burst rate statistics and PEV profiles over time in
WM delays. These measures are by definition estimated over a set of trials (col-
lective measures) and we used trial averaged signals on individual recording sites.
For example, gamma burst rate was correlated with the beta burst rate and spike
PEV over time, on the same electrode.

In addition, we correlated information with induced gamma and beta bursting.
To this end, we calculated the average burst rate across all presentations (500 ms)
divided by the average of all preceding epochs of fixation (500 ms). For PEV
information, we estimated the maximum PEV value during the presentation and
the following delay. For each neuron, we thus obtained one data point. Next, we
correlated the resulting data points across the population. To mitigate the biased
effect of non-uniform distribution of PEVs (a large number of close-to-zero values
and a low number of high values), we resorted to Spearman’s rank correlation.

Finally, some attention should be given to the way we report correlations
between the measures of time-varying spectral band content, burst rate statistics
and PEV profiles. The correlation analyses were performed on individual electrodes
and only the summary statistics (mean and SEM) were presented.

Error trial analysis. In order to investigate whether incorrect trials exhibited
similar burst characteristics as in matching or non-matching correct trials in dif-
ferent epochs during the test period (T1, T2, and the delay between T1 and T2), we
performed the following analysis. First, we defined intervals of potential interest
based on the statistical comparison of temporal profiles of burst rates in correct
non-matching vs correct matching trials using a permutation test on the largest
cluster-based statistics44 at the significance level of 0.05. This approach allowed for
increasing the test sensitivity based on the assumption of temporal continuity of
the data, thereby avoiding a massive multiple comparison problem and resulting in
continuous intervals. These intervals were calculated separately for gamma and
beta burst rates. Second, for each of the resulting intervals, we extracted various
burst characteristics, i.e., average number of burst occurrences, their average
duration and their average spectral power (over the duration and, respectively, beta
or broadband gamma frequency range). Finally, these burst statistics were com-
pared within the intervals using a non-parametric permutation test for exchan-
geability of condition labels. We also tested whether error trials behaved more
similar to either of the correct conditions: within each interval of interest we
calculated two statistics: (i) from the difference between burst rates in correct non-
match minus incorrect conditions and (ii) difference between burst rates in
incorrect minus correct match conditions. Finally, we tested the null hypothesis
that the two means were the same. The number of error trials was low, i.e., on
average there were 4.7 non-matching and 4.1 matching incorrect trials per session.

Data availability. All relevant data and code will be available from the corre-
sponding author on reasonable request.
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