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Abstract

■ Cognitive theories suggest that working memory maintains
not only the identity of recently presented stimuli but also a
sense of the elapsed time since the stimuli were presented.
Previous studies of the neural underpinnings of working
memory have focused on sustained firing, which can account
for maintenance of the stimulus identity, but not for repre-
sentation of the elapsed time. We analyzed single-unit record-
ings from the lateral prefrontal cortex of macaque monkeys
during performance of a delayed match-to-category task. Each

sample stimulus triggered a consistent sequence of neurons,
with each neuron in the sequence firing during a circum-
scribed period. These sequences of neurons encoded both
stimulus identity and elapsed time. The encoding of elapsed
time became less precise as the sample stimulus receded into
the past. These findings suggest that working memory
includes a compressed timeline of what happened when,
consistent with long-standing cognitive theories of human
memory. ■

INTRODUCTION

Theories of human memory have long suggested that
memory depends on a representation of the recent past
in which events are organized on a compressed timeline
(Howard, Shankar, Aue, & Criss, 2015; Brown, Neath, &
Chater, 2007; Crowder, 1976; James, 1890). This implies
that memory provides access to what happened when;
a neural representation supporting a timeline should
enable reconstruction of the chronological order of pre-
vious stimuli as well as their identity. If the timeline is
compressed, then as stimuli recede into the past, their
time of occurrence and identity are represented with less
and less accuracy.
The neural underpinnings of working memory are

studied using tasks that require maintenance of a small
amount of information across a (typically brief ) delay
interval. Most neural models assume that working mem-
ory maintenance relies on sustained firing of neurons
(Goldman, 2009; Egorov, Hamam, Fransén, Hasselmo,
& Alonso, 2002; Goldman-Rakic, 1995). According to this
model, when a to-be-remembered stimulus is presented,
it activates a specific population of neurons that remain
firing at an elevated rate for as long as necessary until the
information is no longer required. A great deal of work
in computational neuroscience has developed mecha-
nisms for sustained stimulus-specific firing at the level of
circuits, channels, and local field potentials (Chaudhuri &
Fiete, 2016; Lundqvist, Herman, & Lansner, 2011; Mongillo,

Barak, & Tsodyks, 2008; Sandberg, Tegnér, & Lansner,
2003; Compte, Brunel, Goldman-Rakic, & Wang, 2000;
Durstewitz, Seamans, & Sejnowski, 2000; Amit & Brunel,
1997). However, if the firing rate is constant while the
stimulus is maintained in working memory, then informa-
tion about the passage of time is lost. Thus, a memory rep-
resentation based on sustained firing is not sufficient to
represent information about time.

Time cells, neurons that fire sequentially, each for a
circumscribed period, during the delay interval of a
memory task (MacDonald, Lepage, Eden, & Eichenbaum,
2011; Pastalkova, Itskov, Amarasingham, & Buzsaki,
2008), provide a neural representation that includes
information about time. By examining which time cell is
firing at a particular moment, one can reconstruct how far
in the past the delay began. Behavioral work on timing
shows that the accuracy in estimating the elapsed time
decreases with the amount of time to be estimated
(e.g., Lewis & Miall, 2009; Rakitin et al., 1998). Two prop-
erties of time cells are consistent with an analogous
decrease in temporal accuracy. First, time fields later
in the sequence should be broader (i.e., less precise).
Second, there should be more neurons with time fields
early in the delay and fewer neurons representing times
further in the past. Both of these properties have been
observed, primarily in rodent work, for time cells in the
hippocampus (Salz et al., 2016; Howard et al., 2014),
entorhinal cortex (Kraus et al., 2015), medial prefrontal
cortex (mPFC; Tiganj, Jung, Kim, & Howard, 2017), and
striatum (Akhlaghpour et al., 2016; Mello, Soares, & Paton,
2015; Jin, Fujii, & Graybiel, 2009).1Boston University, 2Massachusetts Institute of Technology
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The cognitive models for a compressed timeline pre-
dict that distinct sequences of time cells should be trig-
gered by distinct stimuli. In this way, one could directly
read off not only what stimulus occurred in the past but
also how far in the past that stimulus was presented.
Despite some dramatic evidence for sequence memory
in primate lateral prefrontal cortex (lPFC; Ninokura,
Mushiake, & Tanji, 2003, 2004), thus far there has been
little evidence for conjunctive “what and when” infor-
mation in populations of time cells. Earlier studies of
time cells have not observed stimulus-specific time cell
firing (e.g., Akhlaghpour et al., 2016; but see MacDonald,
Carrow, Place, & Eichenbaum, 2013), leading some theo-
rists to hypothesize that “what and when” information
are maintained separately (Friston & Buzsáki, 2016) in
much the same way that “what and where” information
are presumably segregated in the visual system.

METHODS

This article reports reanalysis of data initially described in
Cromer, Roy, and Miller (2010). More detailed descrip-
tions of the behavioral and recording methods can be
found in that article.

Behavioral Task

Two macaque monkeys, one male and one female, per-
formed a delayed match-to-category task. The stimuli
were chosen from one of two independent category
sets; each category set consisted of two categories. One
category set was “animals,” which consisted of the cate-
gories “dogs” and “cats.” The other category set was
“cars,” which consisted of the categories “sports cars”
and “sedans.” Stimuli were constructed as morphed im-
ages, composed from a mixture of two prototype images
each taken from a different category within the same
category set (Figure 2A and B). The test stimulus was
always chosen to be from the same category set as the
sample stimulus, but it could come from either the same
or a different category within that category set.

Each trial was initiated by the monkey grabbing a re-
sponse bar. The trials started with a 1000-msec fixation
period, during which a white cross was presented in
the middle of the screen. The monkey was required to
fixate on it. The fixation period was followed by a 600-msec
sample stimulus presentations and then by a 1000-msec
delay interval, during which the monkey had to maintain
a memory of the stimulus category to be able to success-
fully complete the task and obtain a reward. The delay
period was followed by a test stimulus presentation lasting
for another 600 msec.

On match trials, when the test stimulus was from the
same category as the sample stimulus, the monkey had
to release the response bar within 600 msec of the test
stimulus presentation. On nonmatch trials, the monkey
had to continue holding the bar during the test stimulus

presentation and during a subsequent 600-msec delay
interval followed by a second test image. The second test
image was always a category match to the sample image
(see Figure 2C for a block diagram showing the behav-
ioral protocol). The performance of each monkey was
correct in more than 80% of trials.

Electrophysiological Recordings

Neural recordings were made using up to 16 individual,
epoxy-coated tungsten electrodes (FHC Inc.) positioned
over the lPFC. Spike sorting was performed on digitalized
waveforms using principal component analysis (Offline
Sorter; Plexon Inc.). Five hundred isolated units were
recorded from the two animals. Recordings of 455 of
these 500 units were already used for the analysis pub-
lished in Cromer et al. (2010). Eye movements were re-
corded using an infrared eye tracking system (Iscan).

Identifying Temporal and Stimulus Selectivity
Using Maximum Likelihood

We used a maximum likelihood approach to evaluate
whether time and/or stimulus identity was encoded in
the firing of the recorded cells. These methods build
on analysis methods used to identify time cells in rodent
hippocampus and mPFC (Tiganj et al., 2017; Salz et al.,
2016). Here, we expanded the approach to include the
identity of the stimulus in the modeled firing rates. This
enables the method to identify conjunctive, stimulus-
specific time cells. In each trial, we only analyzed the
1600 msec starting from presentation of the sample and
terminating at the presentation of the next stimulus. This
interval includes the 600-msec presentation of the sample
stimulus and a 1000-msec blank delay interval. The spike
trains of each cell were fitted with models that included
different variables, such as time and stimulus identity.
The parameter space of these models was systematically
explored to compute the maximum likelihood fit. To find
the best-fitting model, the parameter space was iteratively
searched using a combination of particle swarming and
the Quasi-Newton method. Particle swarming was per-
formed first (with the swarm size equal to 50), and its
output was used to initialize the Quasi-Newton method,
which was performed second (the number of maximum
function evaluations was set to 10,000). The computations
were implemented in MATLAB 2016a. To avoid solutions
that converged to a local minimum, the fitting procedure
was repeated until the algorithm did not result with
better likelihood for at least five consecutive runs. As a
preprocessing step, spike trains were downsampled to
1-msec temporal resolution such that, if a spike was ob-
served in a particular 1-msec time bin, the corresponding
data point was set to 1; otherwise, it was set to 0. The
maximum likelihood was computed for each recorded
cell using all available trials.
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Identifying Temporal Receptive Fields

We first identified cells whose firing was modulated by
the passage of time. This was done by comparing the max-
imum likelihood of the fits from two different models,
one containing a Gaussian-shaped time field and the other
containing only a constant term. The model with Gaussian-
shaped time fields had a set of parameters Θ, which con-
sisted of a constant term a0, the amplitude of the time
fields a1, the mean μt, and standard deviation σt of the
Gaussian time field. With this model, the probability of
a spike at any given time point t was given as:

p t;Θð Þ ¼ a0 þ a1T t;σt; μtð Þ (1)

where the Gaussian-shaped time field T (t; σt, μt) was
defined as:

T t;σt; μtð Þ ¼ e
− t−μtð Þ2

2σ2t (2)

We refer to cells that were better fit by Equation 1 than by
a constant term (just a0) as “time cells,” subject to several
constraints described in detail below.
The mean of the time term μt was allowed to vary

between−100 and 1700 msec, and the standard deviation
σt varied between 0 and 5 sec. To ensure that p(t; Θ) can
be considered as a probability, we had to ensure that its
values are bounded between 0 and 1. Therefore, the
coefficients were bounded such that a0 + a1 ≤ 1. The
likelihood of the fit was defined as a product of these
probabilities across all 1,600 time bins within each
trial and across all trials. We expressed the likelihood in
terms of the negative log-likelihood (nLL); therefore,
instead of a product, a sum of the probabilities was
computed:

argmin
Θ

nLL ¼ −
X
trial

X
t

ft log ptð Þ þ 1− ftð Þ log 1− ptð Þ½ � (3)

where ft is the spike train.
To quantify whether the contribution of the terms

that contained time was significant, the maximum log-
likelihood was computed again, but this time with the
time term set to zero (a1 = 0), such that the likelihood
was affected only by the constant term a0. Because the
models with and without time are nested, the likelihood
ratio test was used to assess the probability that adding
the time term significantly improved the fit. The test is
based on the ratio of the likelihoods of two different
models and expresses how many times the data are more
likely under one model than the other, and it takes into
account the difference in the number of parameters. To
ensure that a unit will not be classified as a time cell only
because of its activity in a single trial, the analysis was
done separately on even and odd trials. For a unit to
be classified as a time cell, it was required that the likeli-
hood ratio test was significant ( p < .01) for both even
and odd trials. To eliminate units with ramping or decay-
ing firing rate during a delay interval, μt was required to
be within the delay interval and at least one σt away from

either the beginning or end of the interval. In addition, to
eliminate units with overly flat firing rate from classifica-
tion as a time cell, σt was required to be at most equal to
the length of the delay interval.

Quantifying Category Specificity

The subset of units that passed the above criteria was
classified as time cells. We then tested whether these
units were also modulated by the category of stimulus
on each trial (i.e., cats, dogs, sports cars, sedans) or for
category sets (i.e., animals/cars). Category specificity was
tested with a model that allowed four parameters, rather
than one as above, to modulate the Gaussian-shaped
time field, determined by the identity of the stimulus
category on each trial. The probability of a spike at
time point t was given as:

p t;Θð Þ ¼ a0 þ
X4
i¼1

aiciT t;σt; μtð Þ (4)

where a0 to a4 are the parameters to be estimated
whereas μt and σt are those estimated from the previous
fit with a single time field (Equation 1). The factor ci was
equal to 1 for trials when a stimulus from ith category was
presented and 0 otherwise. For instance, c1 = 1 for trials
that started with a sample stimulus from the dog category
and c1 = 0 for trials where the sample stimulus was a cat,
sports car, or sedan. The model that includes category
specificity (Equation 4) and the model with a single time
field (Equation 1) are nested. Therefore, we use the like-
lihood ratio test to assess the probability that adding
the category specificity significantly improves the fit.
When the outcome of the likelihood ratio test was sig-
nificant ( p < .01), a time cell was classified as category
specific.

Quantifying Category Set Specificity

The category set specificity of the time cells was tested
in analogous way to the category specificity, but using
two time fields instead of four. Each of the two time
fields corresponded to a particular category set. Thus,
the probability of a spike at time point t was given as:

p t;Θð Þ ¼ a0 þ
X2
i¼1

aiciT t;σt; μtð Þ (5)

The factor ci was equal to 1 for all the data points at trials
when a stimulus from ith category set was presented and
0 otherwise. For instance, c1 = 1 for trials that started
with a sample stimulus from the dog or cat categories,
and c1 = 0 for trials that started with a stimulus from the
sports car or sedan category. As in the case of the category-
specific cells, μt and σt were used as estimated from the
fit with a single time field (Equation 1). The likelihood
ratio test was used again to assess whether adding the
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category set specificity (Equation 5) provided a better fit
( p < .01) than the model with four time fields.

As an additional control to evaluate whether category
set specificity was meaningful, we evaluated whether the
number of category-set-specific time cells was more than
one would expect from artificial pairings of categories.
This was done by comparing the number of time cells
that distinguished between animal and car category sets
with the number of time cells that distinguished be-
tween artificial (not meaningful) mixtures of categories.
One control model estimated the number of units that
distinguished dog and sports car stimuli from cat and
sedan car stimuli. The other estimated the number of
units that distinguished dog and sedan car stimuli from
cat and sports car stimuli. Because these artificial “cate-
gory sets” are not meaningful, if the actual number of
units coding for the true category sets—animal versus
car—exceeds the number for the artificial category sets,
we can conclude that the population contains informa-
tion about the organization of the stimuli into category
sets.

Quantifying Sustained Activity

To analyze these results in the light of previous studies
that argued for sustained stimulus-specific firing, we also
identified units that distinguished category identity but
did not satisfy the criteria to be considered time cells.
We found all the units that code for category identity
by fitting a model in which the probability of a spike at
time point t depended on a constant term that depended
on the category identity of the sample stimulus:

p t;Θð Þ ¼
X4
i¼1

aici (6)

where a1 to a4 are the parameters to be estimated and,
as above, ci conveys category identity. Units were con-
sidered as category specific if a better fit was obtained
with a model in Equation 6 than with a model that con-
tained only one constant term a0. A subset of these units
were also identified as category-specific time cells using
the analysis described above.

Linear Discriminant Analysis for
Cross-temporal Classification

In addition to maximum likelihood approach, we used
linear discriminant analysis (LDA) to quantify the decod-
ing accuracy. We divided the 1.6-sec interval composed
of sample and delay periods into 50-msec-long nonover-
lapping time bins. We used the entire population com-
posed of 500 units. The units were recorded during
multiple recording sessions with different number of trials.
To even the number of trials across all units, we restricted
the number of trials to the lowest number recorded from a
single unit, 857 trials. For each time bin, we trained an LDA

classifier on 80% of randomly chosen trials and used the
remaining 20% of the trials for testing. The objective of
classification was to accurately assign each trial to one of
the four stimulus categories, with chance level being
25%. The testing was done on the same time bin as the
training (to evaluate the decoding accuracy) but also on
every other time bin (to evaluate performance of a clas-
sifier as a function of temporal distance between train-
ing and testing time bin). We repeated the training and
testing for 10 iterations to obtain robust results (quan-
tified through SEM ). The classifier was implemented
using MATLAB 2017b function classify. To ensure stabil-
ity of LDA, the dimensionality of the training and testing
data was reduced to full rank before each run of the
classifier.

Computational Model

The computational model used here is based on a pre-
viously published method for computing a scale-invariant
neural timeline (Shankar & Howard, 2012, 2013). The
model can be understood as a two-layer feedforward
network (Figure 1A). The first layer implements an ap-
proximation of the Laplace transform of the input to
the network (keeping only the real part of the coeffi-
cients). The second layer approximates an inversion of
the transform using the Post approximation formula
(Post, 1930). Here, we assume that the input function
is a transient that captures information about the identity
of the sample stimulus at the time it is presented. After
the input is presented, the first layer codes the Laplace
transform of the input function. As the delay progresses,
this input function contains the identity of the sample
stimulus further and further in the past. The Laplace
transform contains this information, and the second layer
approximates a reconstruction of this function, with differ-
ent units supporting different parts of the time axis. We
compare the properties of units in the second layer of the
network with experimentally observed stimulus-specific
time cells. These units estimate the time of the sample
stimulus with decreasing accuracy as it recedes into the
past, resulting in broader time fields and fewer units with
time fields as the sample stimulus becomes more tempo-
rally remote.
To make this more concrete, in the present experiment

with four distinct categories of stimuli, it is sufficient to
consider an input vector f(t) consisting of four elements.
At each moment, f(t) gives the vector-valued category of
the stimulus currently presented. When a stimulus from
a particular category A is presented, the component fA is
set equal to 1 for a brief moment (i.e., a delta function
input) and 0 at other times during the delay.
For simplicity, let us first consider the activity of units

that receive input only from one component of f(t), say
fA(t), with the understanding that, in general, units will
receive some mixture of inputs from all four categories.
Units in the first layer receiving input from fA(t), which
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we denote as FA(t, s), act as leaky integrators (first-order
low-pass filters):

FA t; sð Þ
dt

¼ −sFA t; sð Þ þ fA tð Þ (7)

After receiving an input, units participating in FA decay
exponentially with a rate constant s (Figure 1B, center).
Each unit has a unique rate constant, and we assume that
the probability of observing a unit with a rate constant s
goes down like 1/s (Howard & Shankar, 2018; Howard
et al., 2015; Shankar & Howard, 2013).
Let us denote the activity of units in the second layer

receiving input from FA(t,s) as ef A t; τ*
� �

, where τ* ¼ −k=s
and k is a positive integer that is common across all units.
These units combine inputs from nearby values of s in FA,
computing a kth order derivative with respect to s:

ef A t; τ*
� �

¼ Ck skþ1 F kð Þ
A t; sð Þ (8)

where Ck is a constant that depends only on k. Post
(1930) proved that, in the limit, as k goes to infinity,ef τ*
� �

approximates f(t0 < t).
When the input is a delta function at time 0, the activity

of units in ef A t; τ*
� �

obeys

ef A t; τ*
� �

¼ Ck
1

τ*
t

τ*

� �k
ek

t
τ* ; (9)

where Ck here is another constant that depends only on
k. This expression is the product of an increasing power
term t

j τ*j

� �
k
and a decreasing exponential term ek

t
τ* .

Consequently, the activity of each node in ef A t; τ*
� �

peaks
at its value of −τ* (Figure 1B, bottom).

It turns out (Shankar & Howard, 2012) that the width
of each unit’s activity as a function of time depends
linearly on its value of τ* with a Weber fraction that is
determined by the value of k. We found a good cor-
respondence to the empirical data with k = 15. Whereas
k = 15 yielded the best correspondence with the data,
all choices yield similar qualitative results. To implement
the kth order derivative with respect to s, 2k+ 1 neurons
from the first layer need to project to each neuron in
the second layer with an on-center/off-surround con-
nectivity pattern. If the neurons in the first layer are ana-
tomically organized by their time constant, a spatially
local neighborhood of 2k+ 1 neurons from the first layer
projects to each neuron in the second layer. A higher-
order derivative could also be computed by stacking up
layers that implement lower-order derivatives. For in-
stance, a sixth-order derivative could be implemented by
stacking three layers, each implementing a second-
order derivative. The values of jτ*j were logarithmically
spaced between 100 and 1500 msec. Logarithmic spacing
implements Weber–Fechner scaling.

To mimic stimulus specificity, we assumed that units
in ef received a mixture of inputs from stimuli from four
categories and two category sets (analogous to the behav-
ioral task). For each unit, we picked one category as its
preferred category and weighted its response by one
(Equation 9) for that category. For the other categories,
we picked coefficients randomly to weight the same
temporal response. When a stimulus did not belong to
the preferred category but was from the same category
set as the preferred category, we weighted the impulse
response by a value taken from a normal distribution
with a mean of 0.6 and a standard deviation of 0.3. When

Figure 1. Constructing a scale-invariant compressed memory representation through an integral transform and its inverse. (A) A schematic of
the network architecture. The input stimulus f(t) feeds into a layer of leaky integrators F(t, s) with a spectrum of time constants τ* constituting
a discrete approximation of an integral transform. F(t, s) projects onto ef t; τ*

� �
through a set of weights defined with the operator denoted as

Lk
−1, which implements an approximation of the inverse of the Laplace transform. Notice that the Lk

−1 operator projects only a local neighborhood
(k units) from each node in F layer to each node in ef layer. A schematic of the stimulus set. Reprinted from Cromer et al. (2010). (B) A response of the
network to a delta function input. Only three nodes in F(t, s) are shown. Nodes in ef t; τ*

� �
activate sequentially after the stimulus presentation creating

a memory representation. The width of the activation of each node scales with the peak time determined by the corresponding τ*, making the
memory scale invariant. Logarithmic spacing of the τ* means that the memory representation is compressed. Schematic of the behavioral task.
Reprinted from Cromer et al. (2010).
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the stimulus was from the other category set, the temporal
response was weighted by a value taken from a normal
distribution with a mean of 0.3 and a standard deviation
of 0.3. In addition, all of the coefficients were bounded
between 0 and 1. These values were chosen informally to
provide rough agreement with the empirical data.

RESULTS

In this study, we analyzed recordings from 500 units in
lPFC of two macaque monkeys during performance of a
delayed match-to-category working memory task initially
reported in Cromer et al. (2010). The method is summa-
rized in Figure 2. Neurons in lPFC are known to maintain
stimulus information during the delay. Here, we focus on
the units that showed temporal modulation, with special
attention to the existence of stimulus-specific time cells,
as predicted by cognitive models of working memory
(Howard et al., 2015). To facilitate comparison of the
neural phenomena to theoretical models, we also include
simulations of a computational model for a compressed
neural timeline (Howard et al., 2014; Shankar & Howard,
2012, 2013).

Units Carrying Temporal Information

Of 500 analyzed units, 240 were classified as time cells.
Several examples of firing activity of those units are
shown in Figure 3. The time cells activated sequentially,
spanning the entire interval. The temporal profiles of all
240 time cells averaged across trials are shown on
Figure 4A. The cells are sorted by the peak time of the
estimated Gaussian-shaped time fields (μt).

Temporal Information Was Coded with Decreasing
Accuracy as the Trial Elapsed

There are two ways that a population of time cells would
show decreasing temporal accuracy. First, the width of
time fields should increase as the trial elapses. Second,
the number of units with time fields earlier in the delay
should be larger than the number later in the delay. Both
of these properties were observed.
First, the width of the central ridge in Figure 4A in-

creases from the left of the plot to the right of the plot,
suggesting that units that fire earlier in the trial tend to

Figure 3. Representative examples of units classified as time cells. Each of the five columns shows activity of a single unit. For each unit, the plot in
the top row shows a raster of spikes across trials irrespective of the stimulus category. The bottom row shows the averaged trial activity (solid
green line), the model fit with only a constant term (dotted blue line), and the model fit with a constant term and a Gaussian-shaped time field
(dashed red line). On this and all following raster plots, cyan line at 0.6 sec marks the end of the sample and beginning of the delay period. See
Methods for details. The units were chosen such that the estimated peak time (μt) increases progressively from the first unit to the fifth unit.

Figure 2. Behavioral task. (A) Stimuli were divided into two category
sets, animals and cars; each category set consisted of two categories. The
animal category set consisted of cats and dogs, and the car category set
consisted of sports cars and sedans. Stimuli were morphed combinations
of prototypes within a given category set. (B) Two monkeys performed
a delayed match-to-category task. On each trial, the monkey was required
to respond to whether a test stimulus matched the category of the
sample stimulus. To perform the task correctly, the animal had to
maintain a memory representation of the stimulus category throughout
the sample and delay periods. Reproduced from Cromer et al. (2010).
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have narrower time fields than the units that fire later.
This impression was confirmed by analyses of the across-
units relationship between the peak time (μt) and the
standard deviation (σt) of the estimated Gaussian-shaped
time fields (Figure 5A). The correlation between the peak
time and the width was significant (Pearson’s correlation =
.48, p < 10−14). A linear regression model linking the

peak time (independent variable) and the width (depen-
dent variable) gave an intercept of 0.09 ± 0.01 (mean ±
SE), p < 10−12, and a slope of 0.15 ± 0.02, p < 10−14.
To the extent that the relationship is linear, it confirms
a key quantitative prediction of a scale-invariant timeline;
the dashed green line in Figure 5A is the prediction derived
from the theoretical model (see Methods for details).1

Figure 5. As the trial elapses, time cells in lPFC show broader and less frequent time fields. (A) Width of the time fields increases with the peak time.
Each dot represents the best-fitting parameters for a single unit classified as a time cell. There is no apparent difference between category/category-
set-specific time cells (red) and the nonspecific time cells (blue). The solid black line shows the results of linear regression (only the slope is
shown, without the intercept term). The dashed green line is the relationship between the width and the peak time of time cells generated with the
computational model with parameter k = 15. (B) Peak times of the time fields are nonuniformly distributed along the delay interval. The cumulative
density function for the parameter describing the peak firing of each time cell is shown as the solid black line. A fit with a uniform distribution
is represented with a dotted red line. More time cells had time fields earlier in the delay interval, and fewer had time fields later in the delay interval.
The dashed green line shows the power-law distribution with exponent −1 with values chosen between 100 and 1500 msec.

Figure 4. lPFC time fields show decreasing temporal accuracy for events further in the past. (A) Activity of all 240 units classified as time cells during
the 1.6-sec interval. Each row on the heatplot corresponds to a single unit and displays the firing rate (normalized to 1) averaged across all
trials. Red corresponds to high firing rate; blue corresponds to low firing rate. On this and all following heatmap plots, dashed black line at 0.6 sec
marks the end of the sample and beginning of the delay period. The units are sorted with respect to the peak time estimated for their time
field. There are two features related to temporal accuracy that can be seen from examination of this plot. First, time fields later in the delay are
broader than time fields earlier in the delay. This can be seen as the widening of the central ridge as the peak moves to the right. In addition, the peak
times of the time cells were not evenly distributed across the delay, with later periods represented by fewer cells than early periods. This can
be seen in the curvature of the central ridge; a uniform distribution of time fields would manifest as a straight line. (B) Ensemble similarity of all
240 time cells given through a cosine of the angle between normalized firing rate population vectors. The angle is computed at all pairs of time points
during the observed interval. The bins along the diagonal are necessarily equal to 1 (warmest color). The similarity spreads out indicating that
the representation changes more slowly later in the observed interval than it does earlier in the observed interval.
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Second, the number of time fields later in the trial was
smaller than the number of time fields earlier in the in-
terval. This can be seen from the fact that the central ridge
in Figure 4A does not follow a straight line, as would have
been the case if it followed a uniform distribution. Rather,
the curve flattens as the interval proceeds. To quantify this,
we examined the distribution of the peak times across time
cells (Figure 5B). The Kolmogorov–Smirnov test rejected
the hypothesis that the distribution of the peak times is
uniform, D(240) = 0.28, p < .001. The dashed green line
in Figure 5B is the cumulative that would be expected if the
distribution was a power law with exponent−1 with values
between 100 and 1500 msec (choice of k does not affect
this exponent). The correspondence of the observed re-
sults and this theoretical distribution suggests that the
timeline is compressed logarithmically, consistent with

the Weber–Fechner law. This prediction of the computa-
tional model is independent of the choice of k.
In addition, we investigated whether the data are bet-

ter explained by fitting the stimulus presentation time
(first 0.6 sec of the observed interval) separately from
the delay period (subsequent 1 sec). We computed a bi-
linear fit by finding two slopes and two intercepts that
maximize the likelihood of the data given the bilinear
fit. The power-law fit with the exponent of −1 explained
the data better than the bilinear fit (because the two
models had different numbers of parameters, the fits
were compared in terms of Akaike information criterion
(AIC) and Bayesian information criterion (BIC): ΔAIC =
12.6, ΔBIC = 23).
The observation that temporal information was coded

with decreasing accuracy as the trial elapsed was further

Figure 6. Representative time cells that were modulated by the category of the sample stimulus. A significant proportion of units classified as
time cells distinguished the categories from one another. The activity of three category-specific time cells is shown (rows), with rasters corresponding
to all the trials (left) as well as to each of the four stimulus categories (subsequent four columns). Averaged trial activity is shown as a solid
green line, the model fit with only a constant term is given by the dotted blue line, and the best-fitting model—with different coefficients for
each category—is shown as a dashed red line.
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supported by changes in the ensemble similarity across
time. The ensemble similarity (Figure 4B) was computed
for the population of time cells as a cosine of the normal-
ized firing rate vectors between all pairs of time points
during the observed 1.6-sec-long time interval.

The Population Coding for Time Conjunctively
Carried Information about Category Identity

Of 240 units classified as time cells, 175 also distinguished
the identity of the category of the to-be-remembered
stimulus using the criteria described in the Methods
section. Figure 6 shows several examples of such cells.
These units were classified as time cells because they
fired preferentially at circumscribed periods during the

trial. However, the magnitude of their firing also de-
pended dramatically on what category of stimulus was
presented on the trial.

Time Cells Respected Category Set Structure

The two category sets (animal vs. car) differ in their visual
similarity. That is, cat and dog stimuli are more visually
similar to one another than they are to stimuli from the
car category set. To determine whether stimulus-specific
time cells respected this visual similarity structure, we
noted that 45 of 240 time cells met the definition for
category-set-specific time cells (see Methods for details).
Figure 7 shows several examples of representative units
that were classified as category-set-specific time cells.

Figure 7. Representative time cells that were modulated by the category set of the sample stimulus. As in Figure 6, each row is a cell.
The leftmost column shows data for all trials; the next four columns show data for trials in which the sample stimulus was chosen from each
of the four categories. The lines below each raster show averaged trial activity as a solid green line, the model fit with only a constant term
as a dotted blue line, and the best-fitting model—with distinct coefficients for each of the category sets—as a dashed red line.
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As a control, we computed the number of cells that
had similar coefficients for artificial category sets. The
number of category-set-specific units significantly ex-
ceeded the number of cells specific for artificial category
sets: Eight units distinguished dog and sports car stimuli
from cat and sedan stimuli. Fifteen units distinguished
dog and sedan stimuli from cat and sports car stimuli.
Both of these proportions (8/175 and 15/175) are reliably
different than the 45 of 175 that distinguished the true

category sets (animal vs. car), χ2 = 28.81, p < 10−7,
and χ2 = 16.91, p < 10−4, respectively.
The results for conjunctive coding of “what and when”

information can be read off directly from the heatmaps in
Figure 8, which shows the temporal profiles of all 175
stimulus-specific time cells. The first heatmap in Figure 8
shows the temporal profile for each unit in response to
the category that caused the unit to fire at the highest
rate. The middle heatmap shows the temporal profile

Figure 8. Sequentially activated
time cells in lPFC encode time
conjunctively with stimulus
identity. The three heatmaps
each show the response of
every unit classified as a time
cell. The heatmap on the left
(“Best category”) shows the
response of each unit to the
category that caused the highest
response for that unit, sorted
according to the units’ estimated
time of peak activity. The second
column (“Same category set”)
shows the heatmap for the same
units, but for the other category from the same category set as that unit’s “Best category.” For instance, if a unit responded the most on trials in which
the sample stimulus was chosen from the cat category, then that unit’s response to cat trials would go in the first column and its response to dog trials
would go in the second column. The third column shows the response of each unit to trials on which the sample stimulus was from the other category set.
Continuing with our example, a unit whose best category was cat would have its response to car trials in the third column. The scale of the colormap
is the same for all three plots, and it is normalized for each unit such that red represents the unit’s highest average firing rate and blue represents its
lowest average firing rate across time bins.

Figure 9. Category-specific
cells in lPFC exhibit temporally
modulated firing more than
stable persistent firing.
Colormap and cell ordering
are analogous to the one in
Figure 8. Vertical black lines
denote start of the stimulus
presentation and end of the
delay interval. (A) Each of
the three heatmaps shows
activity of all 73 units that were
category specific and where
the fit with a constant term
was better than the fit with a
Gaussian-shaped time field.
Most of these units show
some form of temporally
modulated firing; very few
units show activity that could
be considered as sustained
throughout the entire stimulus
presentation and delay interval.
(B) Activity of all 269 units
that were category specific
and fit better with a Gaussian-
shaped time field than
with a constant term.
This is a superset to the
category-specific time cells shown in Figure 8, because, to classify cells as a time cell, we imposed an additional set of requirements. Some of these
units that were not classified as time cells (93 of them) show ramping or decaying activity (which could mean that they would potentially be time cells if
the delay interval was longer).
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for the same sorting of units for stimuli for the other
category from the same category set. For instance, if a
particular unit responded most to dog stimuli, that tem-
poral profile would be in the left heatmap and its re-
sponse to cat stimuli would be in the middle heatmap.
The heatmap on the right shows the temporal profile
for each unit in response to stimuli from the category
set that did not include the unit’s best category. For in-
stance, if a unit responded best to dog stimuli, its profile
in the right heatmap gives its response to stimuli from
the car category set, including trials with sample stimuli
from both the sports car and sedan categories.
The sensitivity of the stimulus-specific time cells to

category set can be noted from observing the difference

between the heatmap in the second column and the
heatmap in the third column. Although a difference be-
tween the first and second heatmaps could simply be a
selection artifact, the difference between the second
and the third indicates that time cells in this experiment
respected the structure of the category sets.

Most Units That Encoded Category Identity
Were Time Cells

The fit with four constant terms was better than the fit
with only one constant term for 342 of 500 units. These
342 units distinguished category identity.Most of these units
also showed temporally modulated firing. Furthermore,

Figure 10. Examples of cells from Figure 9A that visually appear most similar to category-specific sustained firing. Vertical red lines denote start
of the stimulus presentation and end of the delay interval.
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269 of 342 of the category-selective units were also tem-
porally modulated (Figure 9B). The firing dynamics of the
remaining 73 category-specific units seemed irregular
rather than sustained in time over the delay (Figure 9A).
Figure 10 shows rasters for typical cells that were category
specific but did not pass the threshold for reliable tem-
poral modulation (as modeled by a Gaussian time field).
Notice that the units that were fit better with a Gaussian-
shaped time field than with a constant term were not nec-
essarily considered as time cells. This is because, for classi-
fying units as time cells, we imposed an additional set of
requirements regarding the peak time and standard devia-
tion, as described in the Methods section (those criteria
were necessary to fully define the time cells in terms of
peak time and width of the temporal fields).

The Ensemble Contained Information about the
Category Identity Well above Chance at
Almost All Time Points

LDA was performed to decode category identity of the
sample stimulus at each 50-msec time bin of the sample
and delay intervals (see Methods). Accuracy for most of
the time bins was above chance (Figure 12). The accu-
racy was computed for 10 runs; in each run, trials were
randomly assigned to train the model (80%, 686 trials)
or held out for testing the classifier (20%, 171 trials).
For the held-out trials, if the classifier successfully
classified 55 or more trials, this exceeds the Type I error
rate at the .05 level. As a conservative estimate of de-
coding accuracy, we took time points for which the
average over the 10 runs exceeded this value as reliably
coding category identity. The accuracy was particularly
high for the time bins where the classifier was tested
on the same time bin it was trained on (the diagonal in

Figure 12). Every time bin after 100 msec along the diag-
onal was classified above chance (30/32 bins), indicating
that the ensemble maintained information about category
identity.
The performance of LDA decoder appeared decreased

as a function of temporal distance between the time bin
the decoder was trained on and the time bin the decoder
was tested on. This is indicated by the gradual change in
columns of the heatmap in Figure 12. Peak accuracy was
obtained around the diagonal elements and gradually de-
creased for points further from the diagonal, suggesting
that the part of the neural ensemble decoding stimulus
category changed gradually over the delay. This obser-
vation is consistent with the gradual change through
sequential activation observed in time cells.

Computational Model for Compressed
Memory Representation

Previous work in computational neuroscience (Howard
et al., 2014; Shankar & Howard, 2012) and cognitive psy-
chology (Howard et al., 2015; Shankar & Howard, 2012)
has developed a quantitative model for how a compressed
timeline could be constructed. This method (described in
more detail in the Methods section) makes a strong com-
mitment to scale invariance of the temporal representa-
tion inspired by robust behavioral results from timing and
memory experiments (Howard, Youker, & Venkatadass,
2008; Rakitin et al., 1998). Consistent with these behav-
ioral findings and the logarithmic compression of recep-
tive fields in the visual system (Van Essen, Newsome, &
Maunsell, 1984; Schwartz, 1977), theoretical consider-
ations (Howard & Shankar, 2018; Shankar & Howard,
2013) strongly suggest that time fields should also be
logarithmically compressed. This quantitative argument

Figure 11. Sequentially
activated time cells generated
with the computational model.
The three plots on the figure
resemble the results shown in
Figure 8. Analogous to the
heatmaps in Figure 8, each row
corresponds to a single model
unit and displays its normalized
activity across time. The cells
are sorted with respect to the
peak time. The two features
observed in Figure 8 are fully
captured by the model: The
time fields later in the delay
were broader than the time
fields earlier in the delay, and
the density of time fields
decreased as a function of time. This illustrates that the model can indeed account for the firing dynamics of the sequentially activated time cells that
form a compressed representation of time. In addition, the model predicts the stimulus selectivity observed in the data. This is because, every time a
stimulus is presented, it activates not only its own memory representation but also the memory representation of other stimuli to the degree
that they are similar to the presented stimulus. The response to stimuli from the same category set is, on average, more similar than the response
to stimuli from different category sets.
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makes two clear predictions. First, the width of time fields
should go up linearly with the time of their peak. Second,
the number of time fields centered on a time τ should go
down like τ−1.
This model can be understood as a two-layer feed-

forward network. However, because it can be well de-
scribed mathematically, analytic results can be readily
obtained (see Methods for details). Figure 5 provides
a means to evaluate whether these quantitative predic-
tions are consistent with the empirical data. The straight
line relating spread of the time fields to their center
(dashed green line in Figure 5A) is a qualitative predic-
tion of the model; the slope of the line is controlled by
a single parameter k (see Methods for details). The dis-
tribution of time fields given by the model is given by the
distribution N (τ) ≃ τ−1; the dashed green line in Figure 5B
shows this distribution with two parameters controlling
the smallest and largest possible values of the center of the
time field (set to 100 and 1500 msec, respectively). The
agreement of the empirical data with the predictions of a
scale-invariant timeline is very strong.
To further evaluate the comparison between the model

and the empirical results, we also generated heatmaps as in
Figure 8. By causing different units in the timeline to re-
spond differentially to stimuli from different categories,
we were able to generate a strong agreement with the
empirical results, as shown in Figure 11. Because these are
analytic results, there is no noise in the time fields across
trials. This qualitative fit of the computational model supports
quantitative findings from the parameters of the descrip-
tive model of time cells and the linear classifier (Figure 12).

DISCUSSION

During performance of a working memory task, some
neurons in lPFC fired in sequences while information
needed to be maintained in working memory. The se-
quences exhibited coding of temporal information—the
time since the sample stimulus was presented (Figure 4)—
conjunctively with information about the identity of the
category of the sample stimulus (Figure 8). The temporal
information decreased in accuracy as time elapsed (Fig-
ure 5). This decrease in accuracy aligned well with pre-
dictions of a scale-invariant timeline taken from cognitive
models of memory.

Temporal Information throughout the Brain

The present findings provide robust evidence of conjunc-
tive coding of “what and when” information in the lPFC.
Although, to our knowledge, this is the first report of
robust stimulus-specific time cells, many recent articles
have shown evidence for sequentially activated time cells
in a broad range of brain regions and multiple species.
Previous studies in rodents have found time cells with sim-
ilar properties in hippocampus (Terada, Sakurai, Nakahara,
& Fujisawa, 2017; Salz et al., 2016; Kraus, Robinson, White,
Eichenbaum, & Hasselmo, 2013; MacDonald et al., 2011),
mPFC (Bolkan et al., 2017; Tiganj et al., 2017), and striatum
(Akhlaghpour et al., 2016; Mello et al., 2015). A monkey
study has observed sequentially activated time cells in
dorsolateral PFC and striatum (Jin et al., 2009). In some
of those previous studies showing time cell activity, the
experimental procedure would not enable measure-
ment of conjunctive “what and when” information (Tiganj
et al., 2017; Mello et al., 2015; Kraus et al., 2013; Jin et al.,
2009). In some other studies, it would have been possi-
ble in principle to measure robust conjunctive “what
and when” information (Akhlaghpour et al., 2016), but it
was not observed or reported. MacDonald et al. (2011) ob-
served some evidence for conjunctive “what and when”
coding in the rodent hippocampus, but it was not as reli-
able as this study (see also MacDonald et al., 2013). Terada
et al. (2017) showed reliable evidence for stimulus coding
in the rodent hippocampus. A systematic study will be
necessary to determine under what circumstances time
cells also show evidence for stimulus identity.

The presence of sequentially activated time cells, re-
gardless of whether or not they also code for stimulus
identity, in so many brain regions with such similar func-
tional properties is striking. This may point to a fun-
damental role for a compressed timeline in many
different forms of memory. Our conventional under-
standing of the cognitive neuroscience of memory de-
scribes memory as composed of a number of separable
systems associated predominantly with various brain re-
gions ( Jenkins & Ranganath, 2016; Eichenbaum, 2012;
Squire, 2004). Although there are ongoing disputes
about how exactly to specify the systems, there is broad

Figure 12. Decoding category identity using LDA reveals gradual
change of the population code across time. The heatmap displays the
accuracy of the LDA classifier applied on 50-msec time bins. Each
bin provides classification accuracy for the classifier trained on a bin
denoted on x axis and tested on a bin denoted on y axis. Each bin is
computed by averaging across 10 runs in which training and test trials
were randomly chosen (80% of trials were used for training, with 20%
of trials held out for testing). The contour encloses bins where
classification accuracy averaged over the 10 runs exceeded the Type I
error rate at the .05 level.
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consensus that the hippocampus is associated with the
declarative memory system, the striatum is associated
with a nondeclarative implicit memory system, PFC is
associated with a working memory system, and so forth.
The fact that such similar temporal representations are
observed in regions associated with so many distinct
memory systems suggests that these memory systems rely
on a common form of temporal representation. Perhaps,
different memory systems perform different operations
on a common representation (Aronov, Nevers, & Tank,
2017; Howard et al., 2015).

For many years, the default understanding of the neu-
ral basis of working memory was that working memory
is maintained through stable persistent firing (Curtis &
D’Esposito, 2003; Goldman-Rakic, 1995; Funahashi, Bruce,
& Goldman-Rakic, 1989; Fuster & Alexander, 1971). We
did not observe large numbers of category-selective cells
that exhibited sustained firing (see Figure 10 for the best
examples). In contrast, category-selective units were tem-
porally modulated, either as time cells or as ramping or
decaying cells. Thus, this study adds to a growing body of
empirical work (e.g., Murray et al., 2017; Spaak, Watanabe,
Funahashi, & Stokes, 2017; Lundqvist et al., 2016; Stokes
et al., 2013) that requires an updated view of working
memory as a dynamically changing representation.

Interestingly, although this task did not test animals’
memory for temporal order, our results clearly show that
the stimulus-selective neurons nonetheless conveyed tem-
poral information. Thus, maintaining a memory represen-
tation of what happened when over the recent past might
be largely spontaneous.

We observed that the width of the temporal receptive
fields increased soon after the stimulus onset, despite the
fact that the stimuli remained present for 600 msec. Simi-
larly, when LDA was used for decoding the stimulus iden-
tity, we observed the peak performance soon after the
stimulus onset. This suggests that the stimulus onset is
perceived as a more salient effect than the stimulus offset.
Further research with experimental paradigms that in-
clude longer stimulus presentations is needed to evaluate
how the stimulus duration is encoded. Furthermore, fur-
ther research is needed to understand whether the neural
timeline can maintain multiple stimuli simultaneously as
well as multiple repetitions of the same stimulus. The
theoretical framework described here is linear and pre-
dicts that multiple repetitions of the same stimulus result
in additive response that allows reconstruction of the
presentation time of each repetition.

Computational Model of Working Memory

Computational neuroscience studies of working memory
have predominantly focused on maintaining information
about the identity of presented stimuli, either through
sustained (Curtis & D’Esposito, 2003; Wang, 2001; Goldman-
Rakic, 1995) or time-varying (Murray et al., 2017; Stokes,
2015; Sreekumar, Dennis, Doxas, Zhuang, & Belkin, 2014;

Lundqvist et al., 2011; Durstewitz & Seamans, 2006) firing
dynamics. Although very useful, such models do not read-
ily account for the temporal aspect of memory. Other
computational models (e.g., Itskov, Curto, Pastalkova, &
Buzsáki, 2011; Goldman, 2009; Grossberg & Merrill, 1992)
can also account for sequentially active firing that can be
used to read off temporal information.
The computational model used here differs from pre-

vious work in that it makes a strong commitment to a log-
arithmically compressed timeline and is mathematically
tractable, enabling straightforward derivation of behav-
ioral predictions (Shankar & Howard, 2012, 2013). The
biological plausibility of the key components of the
model has been studied closely. The major objection,
that the method requires neurons with slow functional
time constants, has been addressed by showing that a
single-cell model based on known properties of persis-
tently firing neurons (Fransén, Tahvildari, Egorov, Hasselmo,
& Alonso, 2006; Egorov et al., 2002) can be readily adapted
to generate a broad range of slow functional time con-
stants (Tiganj, Hasselmo, & Howard, 2015; Tiganj, Shankar,
& Howard, 2013). The other major assumption of the
model is a feedforward projection that is functionally equiv-
alent to a set of on-center/off-surround receptive fields
placed in series. The logarithmic compression of temporal
receptive fields parallels the logarithmic compression of
visual receptive fields, which has been known for decades
(Van Essen et al., 1984; Hubel & Wiesel, 1974). The ob-
served compression is consistent with the Weber–Fechner
law, providing a potential neural substrate for this widely
observed psychophysical law. Moreover, the mathematics
of this model can be readily adapted to provide a descrip-
tion not only of time cells but also a variety of findings from
the place cell literature and even sustained firing (Howard
et al., 2014).

Stimulus-specific Time Cells Are Predicted by
Many Theories of Memory

Previous studies have reported that it is possible to extract
temporal or stimulus identity information by applying dif-
ferent decoding techniques on the activity of neural popu-
lations (Kim, Ghim, Lee, & Jung, 2013; Stokes et al., 2013;
Hung, Kreiman, Poggio, & DiCarlo, 2005; Baeg et al., 2003;
Pesaran, Pezaris, Sahani, Mitra, & Andersen, 2002). Neural
models of timing rely on gradually changing firing rate
throughout a delay period rather than temporal receptive
fields (Kim et al., 2013; Gavornik & Shouval, 2011; Simen,
Balci, de Souza, Cohen, & Holmes, 2011). Similarly, re-
current neural networks, including liquid state machines
(Buonomano & Maass, 2009; White, Lee, & Sompolinsky,
2004; Maass, Natschläger, & Markram, 2002; Buonomano
& Merzenich, 1995), can be shown to maintain information
about preceding stimuli, but thedecoder necessary to extract
that information into a useful form can be quite complex.
Fusi, Miller, and Rigotti (2016) have argued that the brain

expends significant resources representing features
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conjunctively using mixed selectivity to enable linear de-
coding (Rigotti et al., 2013). For coding of continuous di-
mensions, mixed selectivity manifests as receptive fields.
To make a concrete example, the hippocampal place
code might have consisted of as few as two neurons that
fire proportionally to the x or y position of the animal.
Although this code would require few neurons to repre-
sent position, learning an association between a location
in the middle of an arena and reward would be a signifi-
cant computational challenge. Instead, the hippocampal
place code uses many neurons, each with a place field;
the set of all place fields tiles the enclosure. Although this
coding scheme uses many more neurons, it is computa-
tionally straightforward to learn an association between a
circumscribed spatial position (represented by the cur-
rently active place cells) and some behaviorally relevant
outcome. Despite the fact that sequentially activated
stimulus-specific time cells seem to require a great many
neurons, conjunctive coding of “what and when” informa-
tion (Figure 8) enables direct readout of the elapsed time
and the stimulus identity.
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Note

1. Other values of k would have also resulted in a straight line,
but with a different slope. Smaller values of k result in a steeper
slope.
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