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Deep brain stimulation of the internal capsule
enhances human cognitive control and prefrontal
cortex function
A.S. Widge1,2,5, S. Zorowitz 1,6, I. Basu1, A.C. Paulk 3, S.S. Cash3, E.N. Eskandar4,7, T. Deckersbach1,

E.K. Miller2 & D.D. Dougherty1

Deep brain stimulation (DBS) is a circuit-oriented treatment for mental disorders. Unfortu-

nately, even well-conducted psychiatric DBS clinical trials have yielded inconsistent symptom

relief, in part because DBS’ mechanism(s) of action are unclear. One clue to those

mechanisms may lie in the efficacy of ventral internal capsule/ventral striatum (VCVS) DBS

in both major depression (MDD) and obsessive-compulsive disorder (OCD). MDD and OCD

both involve deficits in cognitive control. Cognitive control depends on prefrontal cortex

(PFC) regions that project into the VCVS. Here, we show that VCVS DBS’ effect is explained

in part by enhancement of PFC-driven cognitive control. DBS improves human subjects’

performance on a cognitive control task and increases theta (5–8Hz) oscillations in both

medial and lateral PFC. The theta increase predicts subjects’ clinical outcomes. Our results

suggest a possible mechanistic approach to DBS therapy, based on tuning stimulation to

optimize these neurophysiologic phenomena.
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Mental disorders, particularly mood and anxiety dis-
orders, are a leading cause of disability and economic
burden1. This is in part because many patients have no

relief from gold standard clinical treatments. Focused electrical/
magnetic brain stimulation has been proposed as a better
approach to the mental health epidemic, because stimulation
therapies may directly affect the circuit deficits believed to
underlie mental illness2. Deep brain stimulation (DBS) is a par-
ticularly promising new therapy. Early DBS studies in major
depressive disorder (MDD) and obsessive–compulsive disorder
(OCD) were extremely encouraging3,4. Patients reported dramatic
and long-lasting symptom relief where all prior treatments had
failed. Of five blinded and sham-controlled DBS clinical trials,
however, two met their primary endpoint, two did not, and one
remains unpublished3–5. This ambiguous set of outcomes has
limited DBS’ use in mental illness, despite the pressing need for
new treatments for these disorders. We and others have argued
that the limited clinical trial signal does not reflect a lack of
efficacy, but instead a limited mechanistic understanding4–6. DBS
therapy requires fine tuning of individual patients’ stimulation
parameters, altering the applied electric field to engage a target
circuit7. A challenge in mental illness is that there is no objective
biomarker of that engagement, and thus no rigorous definition of
“effective dose”8,9. The brain’s response to electrical stimulation
has been studied for decades, from simple preparations to com-
plex modeling7,10,11. Despite those studies, the precise therapeutic
mechanism of DBS’ high-frequency stimulation is a topic of
frequent debate. Current theories focus around resetting of
abnormal oscillatory activity, which may alter information
transmission in distributed circuits8,12. This uncertainty suggests
that some patients who did not respond in clinical trials likely did
not receive an active dose of the study intervention. Others may
not even have had a circuit deficit that was appropriate for DBS
treatment. This stands in contrast to the testing of more common
therapies such as medications, where investigators can at least be
certain that a drug achieved a desired serum level.

In clinically successful DBS applications, such as Parkinson
disease, the dosing problem can be solved by trial and error.
Motor symptoms change almost immediately when stimulation is
optimal, and hence clinicians can find the correct dose in a matter
of hours. Psychiatric DBS changes symptoms over weeks to

months, making it impossible to fully explore the parameter space
or to immediately verify the appropriateness of a dose adjust-
ment. If DBS’ mechanisms were better understood, it might be
possible to redesign the clinical approach around physiology.
Stimulation could be titrated to achieve a specific and relatively
immediate electrophysiologic change, with symptom relief
emerging in response to that change4,8,13,14. Thus, understanding
mechanisms of action at the neurophysiologic level is a critical
next step for developing DBS as a psychiatric treatment.

DBS of one specific brain region, the ventral internal capsule/
ventral striatum (VCVS), may be helpful in identifying some of
those therapeutic mechanisms. VCVS is the only DBS target to
pass blinded trials, with success in both MDD and OCD3,4. These
disorders are clinically considered as very different, but their
common response to VCVS stimulation suggests the presence of
common underlying pathophysiology. One commonality parti-
cularly relevant to DBS is that MDD and OCD both involve
impaired cognitive control5,15. Cognitive control is the flexible
adjustment of mental processing and/or responses in the face of
changing environmental demands16,17. Control deficits may
explain inflexible behavior in many mental disorders, e.g., the
“automatic” negative cognitions of MDD, the repetitive behaviors
of OCD, or the rigid interests of autism15,18. The converse
(flexibility) is critical to clinical recovery, e.g., when a behavior
therapist asks a patient to act opposite to a habit. Brain structures
involved in cognitive control include medial prefrontal cortex
(mPFC), the dorsal anterior cingulate (dACC)16,18, lateral pre-
frontal cortex (PFC)18,19, and recurrent circuits connecting those
structures to striatum20. Those cortico-striatal circuits pass
through the VCVS DBS target, meaning that stimulation should
broadly influence prefrontal networks21,22. Thus, we propose that
VCVS DBS may act in part by enhancing cognitive control,
possibly by retrograde activation of corticofugal fibers in the
ventral capsule.

Experimentally, control is often studied through conflict tasks,
where subjects must suppress a pre-potent response to follow a
less intuitive rule16,17. When performing conflict tasks, humans
and other species show increased low-frequency oscillations of
the electrical local field potential (LFP) and/or electro-
encephalogram (EEG). These are particularly common in the
theta (4–8 Hz) band and over/within mPFC17,23. Theta

Table 1 Subject characteristics

Diagnosis Age/sex YBOCS BL YBOCS FU MADRS BL MADRS FU Responder Task EEG Rest EEG Stim Freq

OCD 30/F 34 12 34 11 Y Y N 130
OCD 30/F 31 27 2 3 Y Y Y 130
MDD 40/F N/A N/A 44 11 Y N N 130
MDD 30/F N/A N/A 35 28 N N N 130
MDD 60/F N/A N/A 44 4 Y N N 130
MDD 50/M N/A N/A 33 10 Y Y Y 130
MDD 60/M N/A N/A 33 10 N Y N 100
MDD 50/F N/A N/A 42 29 N Y N 90
MDD 60/M N/A N/A 36 10 N Y N 130
MDD 50/F N/A N/A 42 28 Y N Y 130
MDD 50/M N/A N/A 38 24 N Y Y 50
MDD 60/M N/A N/A 34 9 Y Y Y 120
MDD 70/F N/A N/A 38 30 N N N 130
MDD 50/M N/A N/A 35 38 N N N 100

Ages have been rounded to the nearest decade to mask identities. “Diagnosis” refers to the primary indication for receiving VCVS DBS. YBOCS scores were not collected for subjects whose primary
clinical complaint was not OCD. The “Responder” column indicates whether the subject achieved clinical response at any point during his/her clinical trial; the criterion was a 50% drop in MADRS or a
35% drop in YBOCS. This may not have corresponded to the score at the time of study data collection. Response prediction analyses were based on the score at the time of recording for this study, as
this was more likely to correlate to the measured biomarkers. The “Task EEG” and “Rest EEG” columns indicate subjects who contributed technically adequate EEG for MSIT-related and resting-state
analysis, respectively. All subjects underwent recordings, but some could not be analyzed due to excessive artifact, most commonly from vocalization or substantial head/face muscle activation. “Stim
Freq” gives the frequency of DBS, in Hz
MDD major depressive disorder, OCD obsessive–compulsive disorder, YBOCS Yale-Brown obsessive–compulsive scale, MADRS Montgomery–Asberg depression rating scale, BL baseline (just before
implant), FU follow-up (date of EEG recording or nearest clinical visit)
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oscillations are theorized to allow mPFC neural ensembles to
synchronize with and drive neural firing in other brain regions,
allowing mPFC to “gate” response sets and behavior styles24.
Thus, if DBS does enhance cognitive control, the enhancement
should be reflected in more powerful PFC theta oscillations. This
would also comport with broader theories that DBS acts by
restoring healthy oscillatory activity. We tested this hypothesis by
manipulating human subjects’ VCVS DBS and measuring both
medial and lateral PFC activity via EEG as they performed a
difficult cognitive control/conflict task. Here, we show that VCVS
DBS enhances cognitive control, that this enhanced control is
correlated with the expected PFC theta oscillations, and that the
increased theta power is in turn correlated with clinical recovery.
It should thus be possible to improve DBS’ clinical efficacy by
using these markers for biomarker-based, closed-loop stimulator
programming.

Results
VCVS DBS enhances cognitive control. Fourteen subjects (12
MDD and 2 OCD; Table 1) with VCVS DBS implants performed
a variant of the Multi-Source Interference Task (MSIT, Fig. 1a)
that included emotional distractors to increase overall cognitive
load. We recorded EEG as subjects performed MSIT with their
usual clinical stimulation either ON or OFF (Fig. 1b). We ana-
lyzed task response times (RTs) in a mixed effects generalized
linear model (GLM). Cognitive conflict (interference), emotional
distraction, and DBS all influenced RT (Fig. 1c, d, Supplementary
Fig. 1). As in prior studies25,26, interference slowed RTs by 224
ms on average (t= 53.2 for Wald test of GLM coefficient, p <
1e–20, Fig. 1c). DBS enhanced performance: subjects were on
average 34 ms faster with DBS ON (t=−8.6, p < 1.33e–17,
Fig. 1d). There was no interaction between DBS and trial type, i.e.,
the RT for both control and interference trials was reduced
(Supplementary Fig. 1). DBS-related improvement was not
explained by a speed-accuracy tradeoff, as there was no difference
in error rate between ON and OFF (1.74 vs. 1.69% respectively,
p= 0.48, binomial test). It was not explained by psychomotor

changes, as a different task performed minutes later (Fig. 2a)
showed no change in button pressing speed with DBS ON vs.
OFF (Fig. 2b). On that second task, DBS also slowed reaction
times as subjects chose between two rewarding options, sug-
gesting that the MSIT improvement is not driven by impulsive
responding (Fig. 2c, d). The effect also is not explained by practice
on the task. Any practice effect in this ON-then-OFF design
would appear as the exact opposite of our observation (faster in
OFF). Further, a cohort of subjects who performed repeated
blocks of MSIT without DBS manipulations showed no change in
RT from block to block (Supplementary Fig. 2).

DBS’ effects on cognitive control are linked to PFC theta
oscillations. To test the relationship between improved cognitive
control and frontal theta oscillations, we source localized the task-
related EEG activity to cortical regions implicated in cognitive
control and MSIT specifically (Fig. 1e). We verified that the
source localization preserved oscillatory activity and that the
majority of the task-related activity was non-phase-locked (Sup-
plementary Fig. 2). We then tested for significant theta modula-
tion through sliding multivariate regression with temporal cluster
correction (see Methods). As expected, the cognitive effort
required to perform MSIT increased the power of non-phase-
locked theta oscillations throughout PFC (Fig. 3a, b). In ven-
trolateral PFC (anterior inferior frontal gyrus) particularly, theta
power increased over baseline for the entire post-MSIT period
(Fig. 3c, d). DBS potentiated that increase (p < 0.05, cluster mass
corrected via permutation testing) for nearly the entire MSIT
decision-making period (Fig. 3c) and −199 ms to +120 ms
around the response (Fig. 3d). The DBS effect was specific to the
theta band, with few changes in other frequencies (Fig. 3e, f,
Supplementary Figs. 3–4). DBS’ effect on theta was specific to the
active exercise of control for decision making—theta power in
resting-state recordings from the same subjects did not change
between DBS ON and OFF conditions (Supplementary Figure 4).
In the task recordings, 79.93% of the stimulus-locked significant
theta cluster mass (summed across labels) was between the MSIT
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onset and the mean RT (Fig. 3g), whereas 87.73% of the sig-
nificant response-locked mass was before the response.

In time-domain evoked potentials, almost no DBS effect
survived multiple-testing correction (Fig. 4; Supplementary Fig. 5).
The DBS effect was separate in location and frequency from task-
induced Interference effects (Fig. 3g vs. Fig. 4g, Supplementary
Fig. 5). Supporting the claim that theta power is mechanistically
liked to cognitive control, ON–OFF theta power changes at the
single subject level correlated with subjects’ RT improvement
(Supplementary Fig. 6). These results follow multiple prior
studies suggesting that theta oscillations in medial PFC, lateral
PFC, and cingulate are a neurophysiologic correlate of effective
cognitive control. They further suggest that amplifying those
oscillations facilitates control.

Augmented conflict-evoked PFC theta is a biomarker of
response to DBS. These neurophysiologic changes predicted
clinical outcomes. ON–OFF RT changes alone did not correlate
with subjects’ clinical response to DBS (Fig. 5a, b). However, theta
change in anterior inferior frontal gyrus (IFG), the area with the
largest task and DBS theta effects, did correlate. The ON–OFF
theta difference of Fig. 3c, as calculated in individual subjects,
significantly correlated with improvement in depressive symp-
toms from pre-operative baseline (n= 8, r= 0.76, p= 0.03 by
Fisher Z-transform; area under curve 0.87 with confidence
interval (CI) 0.57–1.0; Fig. 5c, d). This correlation appeared to be
true regardless of subjects’ initial clinical diagnosis. Neither RT
nor theta EEG was strongly associated with hypomania
(Fig. 5e–h), a major clinical complication of VCVS DBS28.
Hypomania is one of several manifestations of DBS-induced
impulsivity. Its lack of correlation with theta or RT, combined

with the lack of impulsive choice in a companion task involving
win-win comparisons (Fig. 2), suggests that our results cannot be
explained simply by impulsive responding.

Discussion
A popular theory of DBS’ mechanism of action suggests that this
deep brain intervention acts primarily on cortex, by stimulating
cortical projections to the implant site21,29. Our results support
this theory, finding oscillatory changes in multiple regions whose
thalamic projections traverse the VCVS21. The effect is only seen
in task-related theta, suggesting that DBS specifically modulates
functional ensembles that activate during effortful cognitive
control. The correlation between that theta modulation and
clinical outcomes suggests a potential physiologically informed
approach to psychiatric DBS. The present practice of adjusting
stimulation based on patients’ subjective report of immediate
mood changes leads to clinician/patient frustration, adverse
clinical outcomes, and missed clinical trial endpoints5,13,30,31. In
future studies, stimulation parameters might directly be titrated to
change a theta biomarker, rather than relying on ad hoc clinician
opinion. For instance, patients might continuously perform tasks
requiring effortful cognitive control, with continuous monitoring
of the trial-to-trial induced oscillations. Stimulation parameters
such as intensity and location along the dorso-ventral axis of the
internal capsule could then be adjusted, either manually by a
programming clinician or under computer control. Next-
generation DBS hardware is already capable of self-titrating sti-
mulation to achieve an electrophysiologic response32, and we
have described early examples of frameworks for this type of task-
driven programming10,13,33. We have also demonstrated methods
for frequency-specific oscillatory enhancement34. Combining
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these methods would bring psychiatric neurostimulation closer to
movement disorders, where tremor can be quickly observed and
DBS titrated to suppress it35.

Prospective validation is, however, critical before moving to a
closed-loop trial. This was a small study, despite being an
exhaustive sample of all willing subjects at one research center.
We used robust procedures to prevent model over-fitting, and
information criterion minimization in particular is mathemati-
cally equivalent to the gold standard, out-of-sample cross-
validation36. The heterogeneity of psychiatric illness never-
theless makes validation an important step for any putative
biomarker37,38. Ideally, the procedures performed here should be
administered pre-operatively and sequentially during a patient’s
DBS treatment, demonstrating a longitudinal correlation between
task-induced theta and clinical response. An ongoing study
(NCT03184454) aims at that prospective longitudinal validation.
Further, clinical response correlated with changes in task-induced
theta, but did not correlate with DBS-induced behavior change—
even though behavior itself was correlated to theta power, as it
was in other cognitive control studies17,23,39. This may reflect
more on the task than on the construct—we chose the MSIT as
our index because of its ability to generate subject-level significant
effects. The tradeoff was a task that could be performed with few
errors. In another recent study with a cognitive control task
involving a higher error rate, behavior did track clinical
improvement39. Measuring control with multiple tasks would be

an important consideration for future work. A more nuanced
measure of cognitive control might also compensate for the
heterogeneity and non-interval nature of clinical scales such as
the MADRS.

Given the broad role of cognitive control deficits in mental
illnesses, our results could have equally broad clinical applica-
tions. Other DBS targets for psychiatric illness, such as the sub-
callosal cingulate (SCC) and the medial forebrain bundle, also
project to the regions we studied40,41. Augmented cognitive
control might be a common mechanism of DBS at multiple
clinical targets. Alternatively, the slightly different white matter
projections of each DBS site might allow each to access and
improve a different cognitive function. In contrast, a DBS target
for movement disorders and OCD, the subthalamic nucleus
(STN), tends to increase impulsive responding during
conflict42,43. STN-like impulsivity thus does not appear to explain
our results. We did not observe a specific speedup on high-
conflict trials, which was a hallmark of the STN studies. Further,
in a second task run immediately after MSIT, subjects had sig-
nificantly increased RTs when required to deliberate in a
win–win situation. This is the opposite of the STN result. Com-
bining the effects of these different targets might enable fine-
grained control of individual patients’ cognitive/emotional defi-
cits, a “precision medicine” approach to therapy5,13. In support of
that idea, a recent clinical trial combined VCVS and STN sti-
mulation in OCD patients. When STN stimulation modulated
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corticothalamic fibers originating in PFC, patients performed
better on a Stroop-like task44. These are the same fibers we are
likely to have engaged using our larger VCVS leads.

Theta oscillations and metrics derived from theta have pre-
viously been proposed as biomarkers of depressive states and
treatment response38,45. One article proposed another theta
measure, resting-state prefrontal cordance, as a predictor of SCC
DBS response46. However, as we reviewed in a recent meta-
analysis38, those studies focused on resting-state activity, where a
given oscillatory band may represent any number of ongoing
mental processes. Here, we specifically demonstrated a change in
task-induced frontal theta, a neurophysiologic process with
strong and well-documented links to executive function17,23. The
report of resting-state cordance in SCC DBS also did not reach its
primary statistical significance endpoint and did not demonstrate
out-of-sample reliability. We reached our pre-specified sig-
nificance level even after multiple-comparison correction, and we
demonstrated out-of-sample evidence through bootstrapping and
through information criterion minimization (mathematically
equivalent to cross-validation36). We posit that the use of a
specific cognitive task to enhance the theta output of conflict-
related ensembles greatly improved signal-to-noise, aiding
detection. We also note that we observed performance
improvements (RT decreases) on both control and interference

trials. We attribute this to the task structure, in which trial types
were interleaved, both with high frequency, and in an unpre-
dictable fashion. In this design, subjects cannot prospectively
predict when they will need to exercise cognitive control. This
should cause control-related frontal circuits to remain in a state of
readiness, effectively decreasing the burden of “switching on”
control16.

We found enhanced theta oscillations in medial and lateral
PFC, dorsally and ventrally, but cognitive control might depend
on only a subset of these regions. That possibility could be
explored in animal models, where genetic tools could limit DBS’
effects to a specific PFC projection29. It would be useful to explore
the degree to which this effect requires specific neurotransmitters
within those circuits. DBS of this same region was recently sug-
gested to affect metabolism specifically through nucleus accum-
bens D1-receptor cells, and those same dopaminergic circuits
may be relevant for DBS’ psychiatric effects47. Finally, animal
studies might dissect the acute vs. chronic effects of neuro-
stimulation. In our data, a greater DBS-induced theta change was
associated with a smaller clinical effect. This may represent a
neuroplastic effect of chronic stimulation: patients who experi-
ence a strong “theta rebound” with DBS OFF may not have
experienced permanent remodeling of brain networks, and thus
retain their depressive vulnerability. Clarifying these mechanisms
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and the clinical correlation could advance both the reliability of
clinical neuromodulation and our broader understanding of
human cognition.

Methods
Experimental design. The overall objective of the study was to assess whether
VCVS DBS modulated human cognitive control capabilities and cortical neural
oscillations relevant to those capabilities. This was a within-subjects design, where
individual subjects completed identical measurement protocols with stimulation on
and off. This design increased statistical power (compared with alternate designs
where DBS subjects would be compared against non-implanted controls) by
admitting hierarchical/mixed modeling and controlling for the substantial het-
erogeneity of treatment-resistant psychiatric patients. Our pre-specified hypotheses
were that:

1. DBS would improve human cognitive control, reflected in increased
performance in the DBS ON condition.

2. DBS would augment the power of theta oscillations, primarily in lateral
prefrontal cortex and dorsal anterior cingulate cortex, given the specific role of
these oscillations in decision-making and response inhibition.

3. The degree of DBS-induced change in the above propositions would explain
part of its mechanism of action, as determined by prediction of the clinical
outcome.

These analyses were not pre-registered. At the time of data collection and study
conception, pre-registration was not a widely available service.

Subjects. Fourteen subjects with VCVS DBS consented to participate in the
experiments. All had received VCVS DBS implants for a prior clinical study
(NCT00640133, NCT00837486, or NCT00555698), with entry criteria given in48,49.
All were right handed. The sample included six males and eight females, aged in
their 30s–70s at time of data collection, with a minimum of 6 months’ exposure to
chronic stimulation and a maximum of 7 years. Subjects had predominantly been
implanted for MDD, but 2/14 had a primary indication of OCD with comorbid
MDD. Most had at least partial clinical response to DBS. Informed consent for
study participation was obtained by a physician who was not the subject’s primary
DBS clinician, after the full nature and possible consequences of the study were
explained. All study procedures comport with applicable governmental and insti-
tutional ethical guidelines. Study procedures were reviewed and approved by the
Massachusetts General Hospital Institutional Review Board.

Experimental protocol. To probe cognitive flexibility, we employed a modified
version of the MSIT (main text Fig. 1a). The MSIT requires subjects to identify
which of a set of three numbers is different than its neighbors. Subjects must keep
three fingers of their right hand positioned over response keys corresponding to the
digits 1–3. In control (non-interference) trials, the target is in the same spatial
position as its corresponding response key, and the flanking digits are not valid
responses (i.e., they are 0s). In interference trials, the target is out-of-position
relative to its corresponding key-press and is flanked by other viable targets.
MSIT has been shown to produce robust functional magnetic resonance imaging
(fMRI)25 and electrophysiologic26 changes, with a significant
(interference–control) difference often detectable at the individual subject level. We
note that this specific operationalization of cognitive control, performance on a
conflict task, is only one of many possible experimental approaches. Cognitive
control is evoked in many situations, including approach-avoidance conflict50,
switch-stay decisions16,51, and possibly also in emotionally valenced self-
regulation52. The specific advantage of MSIT is that it is verified to induce sta-
tistically robust subject-level effects, at both the behavioral and neural level,
amplifying our power to detect DBS-induced differences. We further added an
emotional interference dimension, based on a hypothesis that subjects with severe
treatment-resistant illness would be attentionally biased towards negative pictures.
Before each MSIT trial, an image selected from the International Affective Picture
System, or IAPS53, was presented. The image remained on-screen, partially
obscured by the MSIT stimulus, for the trial duration. A fixed subset of 144 images
were selected from the overall IAPS dataset to cover the range of available valence
(positive, neutral, and negative) and emotional arousal ratings.

Each block of trials contained 72 control and 72 interference trials. We assigned
positive, neutral, and negative IAPS images assigned to each trial type in a
counterbalanced fashion, such that each image was presented once in a control and
once in an interference context. The 144 images were split between these two 144-
trial blocks in a manner that minimized the mean squared pairwise differences
between image ratings when rank ordered by their valence. To prevent response sets
or habituation, trial sequence in each block was pseudo-randomized so that subjects
never had more than two trials in a row that shared the same valence, interference
level, or desired response finger. This highly interleaved trial design was expected to
place greater demands on cognitive control systems by reducing predictability of the
stimuli. As shown in Fig. 1a, subjects viewed the IAPS picture alone for 400ms,
were presented with the MSIT stimulus and given up to 1500ms to respond, and
then viewed a fixation cross for 3–5 s (randomized with a uniform distribution).
They were instructed to minimize eye blinking during the trial and to blink freely
during the fixation period. Before data collection, subjects performed a block of 20
trials where they received correct/incorrect feedback, followed by another block of
40 trials without feedback. They repeated this practice, if necessary, until they
achieved over 90% correct responses (counting missed trials as incorrect).
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Many of our subjects had prior negative life experiences with specific
associations to themes presented in IAPS. To control for these strong subjective/
idiosyncratic interpretations in this small sample, we collected individual image
ratings. After each block was complete, subjects were re-presented with each IAPS
image and given 25 s to rate the image emotionally. We used the same self-
assessment manikin system originally used to develop the IAPS54, which assigns
each picture a valence rating from 1 to 9 (representing most negative to most
positive) and an arousal rating from 1 to 9 (representing not-at-all arousing to
highly arousing). Both the MSIT and the post-task IAPS rating images were
presented using Psychophysics Toolbox (http://psychtoolbox.org) running under
MATLAB 2013a.

Electroencephalographic data were acquired at 1450 Hz (Nexstim eXimia EEG)
from 60 channels placed according to the international 10–20 system and the
manufacturer’s standard cap. The ground electrode was placed on the bridge of the
nose. One diagonal bipolar electro-oculogram channel was placed around the right
eye. Channels were prepared to <5 kΩ impedance. The scalp location of each
channel was digitized after cap preparation and prior to recordings. We also
digitized the nasion and both pre-auricular points, plus 100 additional scalp points
not corresponding to any EEG sensor, to improve the quality of MRI-to-
digitization co-registration. In four subjects, in addition to the task data, we
collected 1 min each of eyes-open and eyes-closed resting data just after each task
block and before the IAPS self-assessment ratings.

All subjects first completed an MSIT block, resting-state collection, and image
assessment with their DBS on at its usual clinical settings (DBS ON). Directly after
MSIT, but before resting-state and image-rating blocks, subjects also completed 15
min of the Effort Expenditure for Rewards Task (EEfRT)27. A trained clinician then
de-activated the bilateral implanted neurostimulators, and the subject rested for at
least 1 h without removing the EEG cap. In animal studies, an hour’s withdrawal of
chronic stimulation was sufficient to produce robust changes in neural activity that
appeared to be a rebound/counter-regulatory response55. This rebound effect does
not terminate within an hour, but persists for an extended period, as documented
by clinical studies where patients slowly relapse over a week after DBS
discontinuation56. The presence of this rebound effect should emphasize or amplify
the neurological changes caused by chronic stimulation. After re-preparing any
high-impedance channels, subjects again performed MSIT, EEfRT, resting-state,
and image ratings (DBS OFF condition) before neurostimulator re-activation.
Subjects were aware of their device status, as were the experimenters, although no
subject experienced adverse psychological consequences from the study
manipulation.

EEG preprocessing. EEG analyses used the minimum norm estimate (MNE)-
Python suite57. Offline, EEG data were bandpass filtered between 0.5 and 50 Hz,
then epoched. This effectively removes the DBS artifact as shown in our and others’
past work37,58, as all subjects’ stimulators were set above the cutoff frequency.
Harmonic frequencies of DBS stimulation would similarly be entirely outside the
passband of this filter and outside of all frequency bands analyzed in this work. See
Table 1 for individual subjects’ stimulation frequencies. We removed eyeblinks
and muscle artifacts with signal space projection59. We then cut trials/epochs
from the continuous data. Stimulus-locked analyses used data from 1.5 s before the
IAPS onset to 3.4 s after IAPS onset (1500 ms after end of trial). Response-locked
analyses used −1.5 s before to 1.5 s after the response. Amplitude rejection
(threshold= ± 150 μV) removed trials with residual artifacts. Finally, we converted
all trials to change relative to baseline, defined as 0.5 s to 0.1 s before the IAPS
onset. For time-domain analyses, we subtracted the mean of this window from all
trials for that specific subject; for frequency-domain, we converted data to decibels
(dB) relative to baseline.

Of the 14 subjects, six were excluded from further EEG analysis during
preprocessing. Four subjects were excluded because their EEG data were recorded
without the use of a digitization system. Their data could thus not be accurately
source localized. Two more subjects were excluded from further EEG analysis due
to substantial electromyographic artifact, which resulted in the rejection of the vast
majority of trials following the quality assurance procedures described above. The
EEG data of the remaining eight subjects was then subjected to source localization
and all further analysis described below.

EEG source localization. We reconstructed subjects’ cortical surfaces from pre-
surgical T1 MRI images using Freesurfer v5.360. The EEG cap digitization was
manually co-registered to the Freesurfer anatomical reconstruction using the MNE
command line tools package. Then, in MNE-Python, the cortical meshes were
downsampled from ~160,000 vertices per hemisphere to 4098 dipole locations
(vertices) per hemisphere. We calculated a forward solution using the three-
compartment boundary-element model61 with the inner and outer skull surfaces
reconstructed from Freesurfer’s watershed algorithm62. The dipole amplitude
(current source density) at each cortical location was estimated using the anato-
mically constrained MNEs method63, using a pipeline similar to other reports of
region of interest (ROI)-based oscillatory analyses64. Briefly, the MNE method
finds the maximum a posteriori estimates of the latent cortical sources, given the
observed sensor sources, assuming (1) the current source amplitudes are sparse and
normally distributed with a known source covariance matrix and (2) the observed
sensor data contain additive noise with a normal distribution and a known spatial

covariance matrix. Importantly, as opposed to other beamforming methods, the
MNE method preserves oscillations such that oscillatory power can be estimated
following source localization. Each vertex’s current source estimate includes a
dipole orientation, such that the source time course may be either positive or
negative at any given time. Here, the orientations of the dipoles were constrained to
the cortex using recommended default parameters (loose= 0.2, depth= 0.8). The
noise covariance matrices necessary for source localization were estimated per
subject from a baseline of period of 500 ms prior to the start of each trial. The
empirical covariance estimates were regularized via the “shrunk” method, as
recommended by Engemann and Gramfort65. Individual source estimate data were
then mapped to Freesurfer’s “fsaverage” cortical surface. Finally, source estimate
time courses for individual vertices were combined within a set of cortical labels
corresponding to our ROIs: cingulate cortex (rACC, dACC, mCC), dorso-mPFC
(dmPFC/superior frontal gyrus), dorso-lateral prefrontal cortex (DLPFC/middle
frontal gyrus), and ventrolateral prefrontal cortex (VLPFC/inferior frontal gyrus).
The average time course per ROI was computed using the “PCA flip” technique in
MNE-Python. Briefly, singular value decomposition (SVD) is applied to the vertex-
wise time courses per ROI and the first right singular vector is extracted. Each
vertex’s time course is then scaled and sign flipped. The scaling is performed in
order to match the average power of vertex-wise time courses. The sign of the time
course is adjusted by multiplying it with the sign of the left singular vector from the
SVD, which ensures that the phase does not change by 180 degrees from one
source time course to the next. Supplementary Table 1 lists these labels and the
anatomical shorthand used for each in the main text/figures. The anatomical labels/
ROIs were manually assembled by merging of multiple smaller, contiguous labels
from the Lausanne 243-region atlas66. The labels used here were designed to ensure
that each cortical region corresponded to a nearly equal number of vertices in the
standard template brain. We selected the label set to cover regions previously
implicated in functional neuro-imaging of the MSIT13,25.

Statistical analysis—behavior. The primary behavioral outcome in MSIT is
subjects’ RT, as they are pre-trained to very low error rates. Along with others, we
have shown that RTs during conflict and decision-making tasks are better
approximated by gamma than by Gaussian distributions13,67. We thus analyzed
behavior in a mixed effects GLM with the gamma distribution and identity link
function. That GLM was applied at the per-trial level, allowing us to model the
effects of DBS and trial-specific effects such as emotion and cognitive interference.
The mixed effects design, which includes a random intercept for the subject,
specifically controls for intra-subject correlation (trials and sessions as repeated
measures). We excluded trials with missing responses, error trials, and post-error
trials. We further excluded trials with outlier RTs, which we defined by fitting a
gamma distribution to each subject’s RT data, pooling the DBS ON and OFF runs
for this preprocessing step. We then excluded trials with RT likelihood <0.005
based on the fitted distribution. These approaches excluded 247 trials (6.12% of
total, n= 3785 trials retained in analysis).

To control for overall RT variability across subjects, we specified GLMs with a
subject-specific random intercept plus fixed effects for experiment variables (mixed
models). Similar to prior reports, e.g.28, we identified the appropriate model by
minimizing Akaike’s information criterion (AIC) during stepwise addition of
variables. Importantly, AIC minimization is mathematically equivalent to
constructing the model by out-of-sample cross-validation36, an approach we have
identified as essential in biomarker research38. We considered interference, DBS,
valence, and arousal as possible RT predictors based on our pre-specified
hypotheses and the task design. We also tested interaction terms between these
main effects. We considered trial number within a run as a nuisance regressor,
controlling for fatigue and/or learning effects. The data were best explained by a
model with the aforegoing main effects, but no interaction terms (see main text and
Supplementary Fig. 1). Models with other predictors, e.g., RT on the preceding trial
(an autoregressive effect), were not identifiable. Conflict and DBS were dummy
coded, whereas valence, arousal, and trial number were treated as continuous
variables. All independent variables were standardized to the 0–1 interval for
regression, but are reported in the article after conversion back to their natural
units for ease of interpretation.

Statistical analysis—EEG modulation by task variables and DBS. For the time-
domain (evoked potential) analysis, sensor and source space time courses were
reduced to the (−0.5, 2.0) s time window for stimulus-locked epochs and (−1.0,
1.0) windows for response-locked epochs. Furthermore, all epochs were low-pass
filtered to 15 Hz and downsampled by a factor of 3. Confidence intervals on plotted
event-related potentials (ERPs) were calculated by 1000 bootstrap resamplings with
replacement (preserving the number of trials within each subject). All ERPs shown
are the grand mean across all subjects.

For the spectral-domain analysis, we calculated non-phase-locked power in
three bands of interest: theta (4–8 Hz), alpha (8–15 Hz), and beta (15–30 Hz). We
emphasized non-phase-locked, or induced, oscillations because they appear to be
more directly related to proactive cognitive control17. In trial-based analyses of
Simon-effect tasks, over 80% of the conflict/control-related theta power change was
non-phase-locked23. The non-phase-locked theta power was correlated with trial-
to-trial RTs, more so than the phase-locked theta reflected in the time-domain
ERP. Further, in a non-trial-structured cognitive control task, theta oscillations
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appeared to be continuously present over mid-frontal cortex, increasing in power
when more control was needed68. In contrast, phase-locked theta oscillations may
be more related to error-related performance monitoring69, a phenomenon not
studied here due to the very small number of error trials.

To calculate non-phase-locked power changes, we first subtracted the mean
ERP from each trial23. The subtracted ERP (and the trials from which it was
subtracted) were calculated for each combination of subject, condition (DBS ON/
OFF × Interference/Conflict trials), and ROI/sensor. All plots of EEG power show
data after this ERP removal.

Sensor and source-localized data were then decomposed into their time-
frequency representation via Morlet wavelet convolution. Wavelets had base
frequencies sampled from 2 to 50 Hz in 25 logarithmically spaced steps, where each
wavelet was characterized by three cycles. Decomposition was performed on single-
trial data, not on the average or ERP. All frequency power estimates were
normalized to the average power of a pre-stimulus baseline (−0.5 s to −0.1 s) for
each frequency band. We used a dB transform for normalization. The baseline
power was computed separately for each subject and DBS condition (OFF, ON).
The same pre-stimulus baseline period used for stimulus-locked analyses was also
used for response-locked analyses. We then averaged the values within each pre-
specified frequency band to obtain a per-trial power time course for each band. All
resulting power values shown in the article were normalized to dB as noted above.
All power topographic and time course plots represent the grand mean across
subjects.

In both sensor and source space, both time-domain and frequency-domain EEG
data were analyzed using ordinary least squares regression70,71. The single-trial
voltage or power at each time point was entered into a linear model using the same
independent variables as the behavioral GLM: interference, DBS, valence, arousal,
and trial number. We standardized all independent variables to the [0, 1] interval
for this model also. We also considered the possibility that interference and DBS
might interact at the neural level even though we saw no behavioral interaction,
and thus included a DBS × interference interaction term in this regression. To
replicate the effect of the subject-specific intercepts in the behavior model, we
subtracted each individual subject’s all-trials mean voltage or power time course
from that subject’s trials. Contrast statistics (t-tests) were computed for each
resulting beta weight (regression coefficient) at each sample. To control for
multiple statistical comparisons (timepoints) within each ROI/electrode, we
performed permutation inference and temporal cluster correction72. We used 1000
permutations for each analysis, discarded clusters <50 ms in temporal extent, and
retained only clusters that were significant at α= 0.05. For the time-domain
analysis in source space, we further corrected these cluster p-values using the
Benjamini–Hochberg false discovery rate (FDR) step-down procedure across all
tested ROIs. For frequency-domain analysis, we did the same, but using a single
step-down across ROIs and frequency bands simultaneously. All significant clusters
shown in the article survived these corrections. The exception is that for sensor-
space analysis, we did not correct for multiple sensors, because we tested only one
sensor for time-domain and one sensor for frequency-domain analysis. The sensor-
space frequency-domain p-values were again corrected for multiple bands.

Statistical analysis—EEG/behavioral changes as biomarkers. We hypothesized
that both theta band EEG and MSIT behavior changes induced by DBS might
correlate with subjects’ clinical response to VCVS DBS treatment. We further
hypothesized that this correlation might be with positive clinical response
(improvement in depression) or with clinical complications (hypomania, as in28).
We quantified these at the individual subject level: MSIT RT as the mean (DBS
ON–DBS OFF) difference, and theta EEG as the integrated height of the (DBS
ON–DBS OFF) difference wave in the VLPFC (anterior inferior frontal gyrus). The
VLPFC label was selected as the predictor variable after viewing the results of the
preceding analyses. The difference wave was specifically calculated over the time
period where we found a significant cluster during the source space analysis.
Depression was measured with the Montgomery–Åsberg Depression Rating Scale
(MADRS) as collected during the subjects’ original clinical trials; we did not
attempt correlation with OCD symptoms because only two subjects in the sample
had OCD. We used the MADRS change from the pre-implant baseline to the day
of data collection, or to the nearest clinical visit to the data collection (always
within 1 month) if a given subject was unable to complete the MADRS that day.
Hypomania used the same dataset as28, in which the presence/absence of hypo-
manic episodes had been coded for each subject by trained clinical raters. The
dependent variable was whether that subject had ever had hypomania during their
DBS treatment course. One subject was not included in hypomania analyses due to
unavailability of clinical data.

Out-of-sample prediction capability is important to assess for putative
psychiatric biomarkers37,38, but difficult to measure in rare populations such as
DBS patients. As a surrogate, we generated confidence intervals for the clinical/
biomarker correlations by drawing 1000 bootstrap resamples (with replacement)
from the original subject population. We used those same bootstrap draws to
construct the confidence interval of the area under the curve (AUC) for receiver-
operator characteristic (ROC) curves for classification of hypomania present/absent
and depression responder/nonresponder. The latter used the same threshold of
50% MADRS improvement as in the clinical trials, e.g. in49.

Statistical analysis—resting-state data. Theta changes observed during MSIT
performance might not be specific to the task, but might arise from a general shift
in the EEG frequency spectrum during DBS. Five subjects contributed at least 2
min of eyes-open resting-state data with DBS ON and OFF. From these data, we
cut 60 1-s artifact-free epochs from the ON and OFF recordings in each subject,
then computed a power spectral density (PSD) from 0 to 30 Hz via the multitaper
method. We computed mean power within the theta (4–8 Hz) region of each
epoch’s PSD, then tested the difference between these distributions with the
Mann–Whitney U-test. We carried out these analyses on theta power from sensor
Fz, which was the scalp point of highest theta power during MSIT performance.

Validation of MSIT behavioral results in epilepsy controls. A potential concern
is that any RT results we observe might be explainable by practice effects. Although
the ON and OFF blocks were separated by an hour or more, subjects might still
retain some procedural memory of the task. To address this confound, we analyzed
data from a group of subjects who performed multiple temporally spaced MSIT
runs without the emotional distractors. These subjects were part of a larger study
focused on the network-level physiology of mental illness13. They were admitted
for inpatient electrophysiologic monitoring of medication-refractory epilepsy.
While inpatient, they were approached daily to perform multiple cognitive tasks,
including MSIT. In this case, we used the original version of the task, which does
not include the background IAPS distractors. Due to the nature of clinical work on
an inpatient unit, including breaks for meals and clinical rounds, these subjects
often performed one or more 64-trial MSIT blocks with a substantial break in
between. This effectively replicates the design of our primary study, except for the
DBS manipulation. We analyzed task blocks performed before and after these
breaks, in eight subjects. For these subjects, we fit their MSIT trial RTs with a
gamma distribution GLM that mimicked the main cohort analysis, i.e., indepen-
dent/predictor terms for block (which mimics the DBS term), conflict, trial
number, and a subject-specific intercept. As with the main cohort, all of these
subjects provided full informed consent before any study procedures. All experi-
mental procedures with these subjects complied with governmental and institu-
tional ethics requirements and were approved by the Massachusetts General
Hospital Institutional Review Board.

Data availability
Pre-processed but not analyzed EEG data (source time courses and sensor-space data)
and related MRI files is deposited at https://openneuro.org/datasets/ds001784.

Code availability
Analysis scripts are similarly archived at https://github.com/mghneurotherapeutics/
EMOTE-afMSIT.
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