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SUMMARY

Understanding the function of different neuronal cell
types is key tounderstandingbrain function.However,
cell-type diversity is typically overlooked in electro-
physiological studies in awake behaving animals.
Here, we show that four functionally distinct cell clas-
ses can be robustly identified from extracellular re-
cordings in several cortical regions of awakebehaving
monkeys. We recorded extracellular spiking activity
from dorsolateral prefrontal cortex (dlPFC), the frontal
eye field (FEF), and the lateral intraparietal area ofma-
caquemonkeys during a visuomotor decision-making
task. We employed unsupervised clustering of spike
waveforms, which robustly dissociated four distinct
cell classes across all three brain regions. The four
cell classes were functionally distinct. They showed
different baseline firing statistics, visual response dy-
namics, and coding of visual information. Although
cell-class-specific baseline statistics were consistent
across brain regions, response dynamics and infor-
mation coding were regionally specific. Our results
identify four functionally distinct spike-waveform-
based cell classes in primate cortex. This opens a
new window to dissect and study the cell-type-spe-
cific function of cortical circuits.

INTRODUCTION

Neuronal cell types are central to brain function. The unique

physiology, morphology, and connectivity of different cortical

interneurons and pyramidal cells shape their functional role in

local and large-scale circuit operations [1–3]. Cell-type-specific

neuronal properties shape characteristic circuit oscillations

associated with various computational and cognitive processes

[4–6]. Thus, knowledge about cell types and their role in cortical

circuits is key to understanding brain function.
Cu
The assessment of cell types ideally relies on morphological,

molecular, or genetic markers [7, 8]. Although these markers

are often not available for extracellular electrophysiology

studies, firing patterns and action-potential shape also provide

some handle on cell-type diversity. In vitro studies first demon-

strated that morphologically identified pyramidal cells and

GABAergic interneurons differ in firing patterns and action-po-

tential shape. Pyramidal cells show regular, low-rate firing pat-

terns and have broad spike waveforms (‘‘broad-spiking’’ units),

whereas inhibitory cells fire at sustained high frequencies with

characteristically thin spike waveforms (‘‘narrow-spiking’’ units)

[9–11]. In principle, these intracellular features map onto extra-

cellular features recorded in vivo [12].

Based on these findings, several studies have inferred putative

cell types from extracellular single-unit activity. In primate pre-

frontal cortex (PFC) [13–16], frontal eye field (FEF) [17, 18], infe-

rior temporal (IT) cortex [19, 20], and V4 [21, 22], spike-waveform

width is bimodally distributed, indicative of the known separation

between excitatory cells and inhibitory interneurons. The propor-

tion of narrow-spiking units in these studies (around 15%–25%)

is consistent with anatomical estimates of the proportion of

GABAergic cells in the cortex [23] (note laminar variability

[24, 25]). Firing properties, selectivity, and task-related modula-

tions differ between broad- and narrow-spiking units, further

supporting the physiological interpretation of distinct cell types

[16, 26]. In sum, so far waveform width has been shown to be

informative about cell-type diversity in the primate brain, allow-

ing to dissociate two broad classes of putative cell types (excit-

atory versus inhibitory). However, in order to better understand

cell-type-specific mechanisms and functions, more cell types

need to be identified. Furthermore, cell-type classification needs

to be compared across different cortical regions.

To address this, we characterized putative cortical cell types

based on spike waveforms in a large dataset of extracellular re-

cordings from three different cortical regions (FEF, dorsolateral

prefrontal cortex [dlPFC], and lateral intraparietal area [LIP]) in

two macaque monkeys [27]. In contrast to the typically re-

ported dichotomy between broad-spiking and narrow-spiking

units, we were able to distinguish four cell classes based on

waveform shape. These four distinct cell classes were
rrent Biology 29, 1–10, September 23, 2019 ª 2019 Elsevier Ltd. 1

mailto:markus.siegel@uni-tuebingen.de
https://doi.org/10.1016/j.cub.2019.07.051


A

C D

B

E F

Inflection 
point

Repolarization time

Trough-to-peak duration 1.1Trough-to-peak 
duration (ms)

n=2488

0

0.6

R
ep

ol
ar

iz
at

io
n 

tim
e 

(m
s)

0.2 0.4 0.6 0.8 1  
Trough-to-peak (ms)

0  

0.1

0.2

0.3

0.4

0.5

R
ep

ol
ar

iz
at

io
n 

tim
e 

(m
s)

Class 1

Class 2

Class 3

Class 4

n=276 (12.3%)

n=1542 (69.1%)

n=174 (7.8%)

n=241 (10.8%)

Accuracy = 0.94

P(
as

si
gn

 | 
tru

e)

0

1

Tr
ue

 C
la

ss

1
2
3
4

Assigned Class
1

2

3

4

2 3 4

-1 0 1 2
Time (ms)

(%)

(n)

806040205 10 100

24881493746249

Sample size (%)

1 2 3 4 5 6 7 8 9 
# Clusters

BIC

-lo
g(

p)

# 
C

lu
st

er
s

Figure 1. Cluster Analysis of Extracellular Spike Waveforms

(A) Illustration of the two spike-waveform features used for classification.

(B) 2D feature space and marginal distributions of waveforms for all recorded

single units.

(C) Clusters of spike waveforms obtained from the Gaussian mixture model.

Single units are assigned to the cluster with the highest posterior probability.

Gray data points are excluded outliers: an initial fifth high-variance cluster and

outliers of the Gaussian mixture distribution (n = 281). Inset: the negative log

likelihood of the BIC as a function of the number of clusters after outlier

removal is shown.

(D) All waveforms by cell class (average waveforms are in black).

(E) Class separation. To quantify the separation of the four clusters, 104 data

points were randomly generated from the fitted Gaussian mixture distribution,

and their true cluster was compared with their assigned cluster. The classifi-

cation outcome is shown by the confusion matrix of marginal probabilities.

Accuracy is the mean of the four diagonal probabilities.

(F) Mean and SD of the number of identified clusters across 100 random sub-

samples of the original data for different sub-sample sizes. The number of

identified clusters drops for smaller sample sizes. Green arrowhead: for 30%

of the original sample size (746 units), 4 clusters are identified for half of the

sub-samples. Red arrowhead: for 60%of the original sample size (1,493 units),

4 clusters are identified for 95% of the sub-samples.

See also Figure S1.
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confirmed by cell-class-specific firing patterns, response dy-

namics, and information coding. Although the four cell classes

were consistently found across all cortical regions, their func-

tional profiles differed between areas. These findings open

a new window into cell-type-specific functions in awake

behaving animals.

RESULTS

Cell-Class Separation Based on Spike Waveform
We analyzed data from 2,488 single units recorded in the FEF

(793), dlPFC (1,050), and LIP (645) of two macaque monkeys

(Figure 1). In a first step, we identified different cell classes in

a purely data-driven fashion based on spike waveform. To in-

crease statistical power, we pooled the data across all cortical

regions and, for each unit, quantified two parameters of the

spike waveform that contribute to the overall spike width:

trough-to-peak duration and repolarization time (Figure 1A).

Trough-to-peak duration is the interval between the global min-

imum of the curve and the following local maximum. Repolari-

zation time is the interval between the late positive peak and

the inflection point of the following falling flank of the curve.

Although correlated, these two measures capture different

aspects of the intracellular action potential—the speed of de-

polarization and of the subsequent after-hyperpolarization

[12]—that are both distinguishing features of neuronal cell

types [28]. All 2,488 waveforms were scored on the two mea-

sures to obtain a two-dimensional feature space for classifica-

tion (Figure 1B).

To identify different cell classes in an unsupervised way, we

performed a two-dimensional cluster analysis of the waveform

parameters (Gaussian mixture model). We used the Bayesian

information criterion (BIC) to select the number of Gaussian

components in the model. The BIC showed a global minimum

for four components indicating four distinct waveform classes

(Figure 1C). Ranging from narrow to wide waveforms, the four

classes comprised 7.8%, 10.8%, 12.3%, and 69.1% of the sam-

ple, respectively (Figure 1D). Thus, most units were attributed to

the widest waveform class (class 4). We quantified cluster sepa-

ration by calculating the probability of correctly classifying each

cell class based on the Gaussian mixture model underlying the

clustering (Figure 1E). The average classification accuracy

across all four classes was 94%, indicating well-separated

clusters.

To assess the effect of the large sample size on the number of

identified clusters, we sub-sampled the data at various sub-sam-

ple sizes (100 random sub-samples for each size) and repeated

the cluster analysis (Figure 1F). As expected, the number of iden-

tified clusters dropped for smaller sample sizes. 30% (746 units)

and 60% (1,493 units) of the original sample were required to

identify 4 clusters in at least 50% and 95% of the sub-samples,

respectively (Figure 1F, green and red arrowheads).

To compare the present result to previous approaches sepa-

rating waveforms into only two classes (narrow versus broad)

[13–15, 18, 20–22, 29, 30], we performed a 2-class Gaussian

mixture model clustering on the trough-to-peak duration only

(Figure S1). This revealed that a 2-class separation would have

split the intermediate class 3, assigning it to both narrow- and

broad-waveform categories.
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Figure 2. Reliability ofWaveformClustering across Cortical Regions

(A) Distribution of units across cortical regions and cell classes. Brackets

indicate significant post hoc c2 tests for different cell-class distributions

across areas (p < 0.05, Bonferroni corrected).

(B) Waveform feature spaces with clustering run separately for the FEF, dlPFC,

and LIP.

(C) Cluster separation and similarity of cell classes across areas. Confusion

matrices on the diagonal show separation of the four clusters for each area’s

own Gaussian mixture model (as in Figure 1E). For all other area pairs,

confusion matrices measure the similarity between the same cell-class clus-

ters in the two areas. Cluster similarity is estimated by randomly generating 104

data points from one area’s Gaussian mixture distribution (‘‘Area data’’) and

classifying them based on the Gaussian mixture distribution of the other area

(‘‘Area model’’).

(D) Mean diagonal probabilities of confusion matrices in (C).
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Cell Classes across Cortical Regions
We next investigated whether the waveform-based cell classes

were robust across different cortical areas (Figure 2). Splitting

the data by areas revealed that the four classes were unequally

distributed across cortical regions (c2 omnibus test, p < 0.001;

Figure 2A). Thus, we asked whether the four waveform clusters

were consistently identified within each region. Indeed, clus-

tering run separately on each area consistently returned four

classes with the same overall structure (Figure 2B).

To estimate the cluster separability within each area, we

quantified the probability of correctly classifying each class

based on the Gaussian mixture model within each region (Fig-

ure 2C, diagonal plots). Furthermore, to estimate the wave-

form class similarity across brain regions, we quantified
cross-classification accuracy between different regions, i.e.,

we trained and tested the classifier on different regions (Fig-

ure 2C, off-diagonal plots). For both cases and across all brain

regions, classification accuracy was above 75% (Figure 2D).

This indicates both a consistently high separation between

the four clusters within each region and a high overlap of

each cluster across regions. In sum, the four waveform-based

cell classes were robustly and similarly observed across the

three cortical regions.

Firing Statistics of Cell Classes
What are the functional properties of the four putative identified

cell types? If the four spike-waveform clusters reflect distinct

physiological cell types, the corresponding units should show

different functional characteristics. We started by examining

firing statistics during the 500-ms blank fixation baseline before

stimulus onset of a flexible visual decision-making task (see

Figure 4A for task timing). For each neuron, we computed

four statistics during this trial period: mean firing rate (FR)

across trials, Fano factor (variance over mean of spike counts

across trials; FF), coefficient of variation of the inter-spike inter-

val distribution (CVISI), and burst index (BI). Both Fano factor

and CVISI are mean-standardized measures of dispersion that

reflect firing variability, with an expected value of 1 for Poisson

firing and values below 1 indicating more regular firing [31].

Burst index was defined as the ratio between the observed

proportion of bursts (inter-spike intervals < 5 ms) and the pro-

portion of bursts expected for a Poisson process with equal

mean rate [13]. To rule out a confound due to the region-spe-

cific distribution of cell classes, we stratified the proportion of

cells per cell class across regions (STAR Methods). One-way

ANOVAs showed significant cell-class separation on all four

measures (all p < 0.05) (Figure 3A). Firing rate was highest

for class 1 units (narrow waveforms), followed by the two inter-

mediate-waveform classes 2 and 3 (not significantly different

from each other), and lowest for class 4 (broad-spiking units).

Fano factor showed a similar pattern: class 4 had the lowest

Fano factor and therefore more regular firing, also confirmed

by the low CVISI. These results agree with the classical desig-

nation of narrow-waveform neurons as fast spiking (FS) and

broad-waveform neurons as regular spiking (RS) [9, 10, 28].

On the other hand, the intermediate-waveform class 3 was

more likely to fire in bursts than any other class.

Firing Statistics Validate Four Cell Classes
The significant differences of firing statistics between cell clas-

ses support the conclusion that the four waveform-defined cell

classes reflect distinct physiological cell types. To further

validate this conclusion, we employed a machine-learning

approach: assuming the waveform-based classes as ground

truth, we trained a multivariate classifier (SVM; support vector

machine) to decode these four cell classes from all four firing sta-

tistics. Again, if the four waveform clusters reflect distinct cell

types, class membership should be predictable from functional

cell properties. Indeed, we were able to significantly predict all

four cell classes with high classification accuracy (Figure 3B;

classifier accuracy, 0.53 ± 0.02; mean ± SD over 50 area-strati-

fied sub-samples, all p < 0.05, false discovery rate [FDR] cor-

rected, binomial test).
Current Biology 29, 1–10, September 23, 2019 3
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Figure 3. Cell-Class-Specific Baseline Firing

Statistics

(A) Firing statistics by cell class. All measures were

computed during a 500-ms blank fixation period at

the beginning of each trial. CVISI: coefficient of

variation of the inter-spike interval distribution.

Burst index: proportion of inter-spike intervals

<5 ms over the proportion expected from a Poisson

neuron. Brackets indicate significant post hoc

pairwise differences (p < 0.05, FDR corrected).

Error bars denote SEM. Means and SEMs were

area-stratified.

(B) Confusion matrix for supervised classification of

cell classes using the four baseline firing statistics

as features. White dots indicate overall perfor-

mance significantly above chance (binomial test,

p < 0.05, FDR corrected).

(C) Mean diagonal probabilities (‘‘Accuracy’’) for

cross-area classification. Classifiers trained on data

from one area (‘‘Train’’) were used to predict class

labels of the other area (‘‘Test’’). White dots

indicate significant class prediction (permutation

test, p < 0.05, FDR corrected).

(D) Variance explained by cell class, cortical area, and their interaction in a two-way ANOVA performed on each firing statistic by area. All main and interaction

effects were significant (p < 0.05). Error bars denote SEM.

See also Figure S2.
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The classification approach allowed us to test whether class-

specific functional properties were stable across cortical re-

gions. We trained classifiers on data from one cortical area

and tested them on data from a different area (cross-classifica-

tion). Classification performance always exceeded chance level

(permutation test, all p < 0.05, FDR corrected; Figure 3C), sug-

gesting that cell classes maintain their functional profiles across

regions. This was also indicated by the univariate measures

broken down by area (Figure S2). Although there was a signifi-

cant interaction between cell class and area (two-way

ANOVAs, all measures p < 0.05), the cell-class effect was signif-

icant for all statistics and, for firing rate and Fano factor, most of

the variance was independently explained by cell class (Fig-

ure 3D). In sum, firing statistics differed between, and thus vali-

dated, four waveform-based cell classes that were robust across

cortical regions.

Cell-Class-Specific Firing Dynamics
Next, we investigated whether the four cell classes differed in

their firing dynamics in response to a sensory stimulus (Figure 4).

We characterized each neuron’s response to presentation of a

visual cue that indicated the upcoming task condition for each

trial of the perceptual decision-making task (see the schematic

of behavioral paradigm in Figure 4A). We computed peristimulus

time histograms (PSTHs) in a window including the baseline fix-

ation period (0.5 s) and the subsequent cue period (1 s).

The cell-class-specific PSTHs pooled across regions sug-

gested differences of the response dynamics between cell clas-

ses (Figure 4B). For example, class 4 showed less transient

responses to cue onset as compared to the other cell classes

(see also Figure S3 for individual regions). To statistically assess

this in an efficient way, we captured the firing dynamics in a

low-dimensional space. We performed a principal component

analysis (PCA) of the PSTHs of all neurons pooled across regions.

We then used a cross-validation procedure to estimate the
4 Current Biology 29, 1–10, September 23, 2019
effective rank of the dataset, i.e., the number of underlying orthog-

onal dynamical features or principal components. We found four

significant components (Figure 4C), explaining 63% of the

response dynamics’ variance and capturing different response

modulations.

We projected each neuron’s PSTH onto the four significant

PCs and used the resulting low-dimensional representation of

the response dynamics as features for multivariate decoding.

Importantly, we normalized PSTHs on the mean spike rate of

the baseline period. This ensured that the decoder was not clas-

sifying merely based on differences in overall activity levels but

that it specifically probed cue-related responses. Again, to rule

out a region-confound, we stratified the proportion of cells per

class across regions. We found that cell classes 3 and 4 could

be significantly decoded, confirming cell-class-specific PSTH

dynamics (Figure 4D; binomial test on confusionmatrix probabil-

ities, both p < 0.05, FDR corrected for multiple comparisons;

classifier accuracy, 0.32 ± 0.03; mean ± SD). Classes 1 and 2

showed similar decodability, though they did not reach statistical

significance, likely due to the smaller number of units for these

two classes.

Averaging the PSTHs of all units within each brain region re-

vealed different response dynamics across regions (Figure 4E).

Thus,wehypothesized thatcell-class-specific responsedynamics

would be area specific. To test this, we performed cross-area de-

coding of cell classes based on response dynamics. We per-

formed a PCA and trained the classifier on a training area and

applied the PCA and classifier to another test area. Indeed, we

found that, unlike for baseline firing statistics, cell-class decoding

based on response dynamics did not significantly generalize

across areas (Figure 4F). Accordingly, the cell classes’ response

dynamicsshoweddissimilarpatterns in the threeareas (FigureS3).

For example, whereas class 4 showed the least transient re-

sponses in all areas, class 1 showed themost transient responses

only in LIP (compare Figures 4B and S3).
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namics

(A) Schematic of the behavioral task.

(B) Average PSTH for each cell class. PSTHswere Z

scored on the mean and SD of the baseline period

across trials. PSTH means and their SEs (shaded

regions) were calculated after stratifying cell-class

proportions across areas. The SE of class 4 is

overlaid by the mean trace.

(C) Four significant principal components (PCs)

explaining the PSTH variance across cell classes.

Percentages denote the variance explained by

each PC. Top right inset: the reconstruction error

(PRESS; prediction residual error square sum) as a

function of the number of principal components is

shown. PRESS is minimal for 4 components.

(D) Confusion matrix for supervised classification of

cell classes using PCA projections of the PSTHs.

White dots indicate significant class prediction

(binomial test, p < 0.05, FDR corrected).

(E) Average PSTHs for the units recorded within

each of the three brain areas. Error bars denote

SEM across units.

(F) Mean diagonal probabilities (Accuracy) for

cross-area classification. Classifiers trained on data

from one area (Train) were used to predict class

labels of the other area (Test). The PCA trans-

formation was estimated on the training area and

applied to data of the test area. White dots indicate

significant class prediction (permutation test,

p < 0.05, FDR corrected).

See also Figure S3.
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Cell-Class-Specific Information Coding
If cell classes vary in their cue-evoked response dynamics, do

they also differentially code for specific cues? To address this

question, for each neuron, we quantified the amount of cue infor-

mation encoded by its firing rate, by measuring the amount of

firing-rate variance across trials explained by cue identity (Fig-

ure 5A; ANOVA, 4 cues). We then trained a classifier to decode

cell classes based on cue information. Again, we controlled for

a potential confound of area by stratifying cell classes across

brain regions. Furthermore, to control for confounds due to firing

statistics, before classification, we regressed out linear depen-

dencies of cue information on baseline firing statistics (firing

rate, Fano factor, coefficient of variation of the ISI distribution,

burst index). We found that cell classes 2 and 4 could be signif-

icantly decoded from cue information (Figure 5B). We next per-

formed cross-area classification to assess the region specificity

of class-specific information. We found that cross-area classifi-

cation performance was low (Figure 5C). Thus, although neurons

of classes 2 and 4 on the whole carried different cue-related in-

formation, the pattern of cue information across cell classes was

area specific. This was confirmed by plotting average informa-

tion for each cell class and region (Figure 5D), suggesting that,

e.g., cell class 4 was more cue informative than classes 2 and

3 in dlPFC but less informative than classes 2 and 3 in the FEF.

Specificity of Functional Properties
Having established that the four cell classes differ in baseline ac-

tivity, response dynamics, and information coding, we pooled

together all three feature sets to construct an ‘‘omnibus’’ decoder

that could predict all cell classes well (Figure 6A; mean accuracy,
0.49). To assess each feature’s relative contribution to classifica-

tion, we recast the problem in a linear framework (linear

discriminant analysis; LDA) and used the univariate class effects,

normalized to a common scale, as a proxy for feature importance.

We computed feature importance for each of the six pairwise cell

classifications (Figure 6C) and then averaged to show the overall

weightings (Figure 6D). Furthermore, we compared cell-class

classification accuracy (Figure 6E) and area specificity (Figure 6F)

for each individual feature set and all combined sets.

These analyses showed that cell classes were most strongly

separable by the four baseline firing statistics. This separation

was most consistent across cortical regions (compare Fig-

ure 3C), suggesting that cell types maintain their basic firing

properties even when embedded in functionally diverse areas.

Although also showing class effects, cue-related response dy-

namics and information coding were less cell-class specific,

and to a greater extent reflected area-specific process. Further-

more, pairwise feature importance (Figure 6C) showed that

cell-class separation differed for distinct response dynamics de-

pending on which two classes were being compared.

Finally, we performed two control analyses to rule out

potential confounds (Figure 7). First, we ruled out that the

observed effects were driven by a systematic difference in sin-

gle-unit sorting quality between the four cell classes. To this

end, we employed two measures of sorting quality: a subjective

quality index (QI) that wasmanually specified for each unit during

sorting, and the Mahalanobis distance of each unit’s waveform

to the unsorted noise-waveform cluster of the corresponding

electrode and recording. Indeed, both measures showed a sig-

nificant cell-class effect (QI: p < 0.001, c2(degrees of freedom
Current Biology 29, 1–10, September 23, 2019 5
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Figure 5. Decoding of Cell Classes from Cue-Related Information

(A) Cue information by cell class. Cue information was quantified as spike-rate

variance (u2) in the late cue period (500–1,000 ms from stimulus onset) across

trials explained by cue identity. The four baseline firing statistics (firing rate,

Fano factor, CVISI, burst index) were regressed out. Mean information and

SEMs (error bars) were calculated after stratifying cell-class proportions

across areas. Cue information significantly differed between cell classes (one-

way ANOVA, p < 0.05).

(B) Confusion matrix for supervised classification of cell classes from cue in-

formation. White dots indicate significant classification performance (binomial

test, p < 0.05, FDR corrected).

(C) Mean diagonal probabilities (Accuracy) for cross-area classification using

cue information. Classifiers trained on data from one area (Train) were used to

predict class labels of the other area (Test). White dots indicate significant

classification (permutation test, p < 0.05, FDR corrected).

(D) Cue information by cell class and brain region. Error bars denote SEM.
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Figure 6. Decoding of Cell Classes from All Combined Functional

Measures

(A) Confusion matrix for classification of cell classes using all functional

measures as features (4 baseline firing statistics, 4 PCA projections of PSTH,

cue information). White dots indicate significance (binomial test, p < 0.05, FDR

corrected).

(B) Mean diagonal probabilities for cross-area classification. For PSTH fea-

tures, the PCA transformation was estimated on the training area and applied

to the test area. White dots indicate significance (permutation test, p < 0.05,

FDR corrected).

(C) Feature importance for all features derived from pairwise linear classifiers

quantified as the magnitude of FIRM (feature importance ranking measure).

Error bars are SD across 50 area-stratified sub-sampled datasets. Red lines

show reference FIRM values for ‘‘null’’ classifiers using shuffled class labels

(FR, mean firing rate; FF, Fano factor; CV, coefficient of variation of the ISI

distribution; BI, burst index; PC1–PC4, PSTH PCA projections; Cue, cue in-

formation.

(D) Feature importance for all features, averaged across the six pairwise binary

classifiers. Error bars show the SEM across binary classifiers. The red line

shows the reference FIRM value for shuffled class labels.

(E) Accuracy across cell classes for all four classifiers. Accuracy is the mean

diagonal probability of the confusion matrix. Error bars show the SD across 50

area-stratified datasets. The red dashed line indicates chance-level accuracy

(0.25).

(F) Area specificity for all four classifiers computed as the ratio between

average within-area and cross-area classification accuracy. The red dashed

line indicates the value expected for perfect generalizability across areas. Error

bars show the SD across 50 area-stratified datasets.
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[df], 3) = 32.3; Mahalanobis distance: p < 0.001, one-way

ANOVA). Thus, for both measures, we stratified the dataset to

equate sorting quality across the four cell classes and repeated

the cell-class decoding using all functional measures as features

(four baseline firing statistics, PCA projections of PSTH, cue in-

formation) (Figure 7A). Both stratifications had hardly any effect

on the result. All cell classes remained significantly and similarly

decodable from the functional measures (mean accuracy QI

stratified, 0.49; mean accuracy Mahalanobis distance stratified,

0.46; compare Figures 7A and 6A). Thus, the reported effects

were not driven by a sorting-quality confound.

Second, we ruled out that the results merely reflected different

spike waveforms or functional cell properties for the two

monkeys rather than distinct cell classes. To this end, we inde-

pendently repeated the cell-class decoding for each of the two

animals using all functional measures (Figure 7B). This revealed

very similar independent results for both animals (Figure 7B;

meanaccuracymonkeyP, 0.48;meanaccuracymonkeyR, 0.44).

DISCUSSION

We employed a large dataset of electrophysiological recordings

in awake behaving monkeys to distinguish cortical cell types

based on extracellular spike waveform. Across dlPFC, FEF,
6 Current Biology 29, 1–10, September 23, 2019
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Figure 7. Control Analyses

(A) Confusion matrix for supervised classification of cell classes using all

functional measures as features (four baseline firing statistics, PCA projections

of PSTH, cue information) after stratification of units to equate sorting quality

across cell classes. Left: stratification based on the sorting quality index (QI).

Right: stratification based on the Mahalanobis distance of each cell waveform

from the unsorted noise waveforms of the same electrode and recording.

(B) Confusion matrix for supervised classification of cell classes using all

functional measures for both individual animals.
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and LIP, we robustly identified four distinct cell types that

showed distinct functional properties in terms of baseline firing

statistics, sensory response dynamics, and information coding.

Four Waveform-Based Cell Classes
Our results go beyond previous studies that dissociated only two

cell classes (narrow-spiking putative interneurons versus broad-

spiking putative pyramidal cells) based on extracellular spike

waveform in monkeys [13–15, 18, 20–22, 29, 30]. An important

factor for this advance is likely that we employed a two-dimen-

sional feature space for waveform classification. We considered

two highly informative waveform measures that have a known

physiological relationship to cell-type-specific action-potential

dynamics [28]. Most previous work using trough-to-peak dura-

tion as a single-waveform feature found a clear bimodal distribu-

tion, which justified a two-class scheme. In our data, only the

repolarization time showed clearly two distinct modes (see mar-

ginal histograms in Figure 1B), whereas trough-to-peak duration

likely consisted of even more latent components. Together,

these measures allowed for defining four bivariate clusters that

were less discriminable when projected only onto one dimension

(see also [32, 33]). Future studies may investigate whether addi-

tional features, such as, e.g., waveform amplitude or spectral

features, can further enhance waveform classification.

It will also be important to assess the effect of the specific

band-pass filtering applied to the recorded extracellular voltage

traces before spike extraction. The choice of band-pass filtering
certainly affects waveform shape. The filtering that we employed

(0.5–6 kHz) was similar to that of previous studies [18, 19, 21].

Broader filtering may reveal additional waveform features useful

for cell-class separation [16], but it may also enhance waveform

noise. Future studies are required to systematically investigate

and optimize band-pass-filter choices.

Importantly, owing to the high statistical power of our large da-

taset, we were able to use unsupervised methods to discover

waveform clusters in the data. We performed classification

without a priori definition of the number of clusters. We also

determined class assignments by purely statistical criteria,

instead of using prespecified thresholds (i.e., specific values of

spike width). This avoided potential confounds due to a priori

parameter selection. A sub-sampling analysis confirmed that

the large size of the dataset was key for this approach.

A cross-classification analysis revealed that waveform clus-

tering was robust across cortical regions. This has two important

implications. First, while increasing statistical power, pooling of

single units across the FEF, dlPFC, and LIPmeant that clustering

outcomes could be biased by cortical area. For example, if there

were only two true classes that occupied slightly different re-

gions of the 2D feature space depending on the recording

area, then the whole sample would spuriously appear to contain

multiple latent classes. This was not the case, as we ascertained

by rerunning the unsupervised cluster analysis independently on

data from the three areas, which reliably revealed four cell clas-

ses with comparable statistical structure in each area (Figure 2).

Second, this finding supports the notion of cell types as stable

physiological entities at the level of cortical microcircuits and col-

umns, yet with specific functional roles across different cortical

regions [34]. However, it should be noted that research on area

specificity of cell types is still in its infancy [3] and that excitatory

cells indeed show distinct transcription profiles across cortical

regions [8].

Waveform Width as a Cell-Class Marker
Our results add to a growing body of evidence suggesting ac-

tion-potential width as a versatile cell-class marker. In monkey

dlPFC in vitro, a morphologically confirmed ‘‘adapting non-pyra-

midal’’ cell class shows a distinct intermediate spike waveform,

significantly different in width from that of both regular-spiking

and fast-spiking cells [11]. Among 12 intracellularly measured

physiological parameters, action-potential duration had the

largest effect size [35]. The discriminating power of spike width

has been systematically tested in an analysis of electrophysio-

logically defined cell types (‘‘e types’’) in rat S1 [36]. Here, spike

width was ranked as the best-discriminating feature out of 38

electrophysiological measures. Taken together, these and our

present results suggest that spike waveform is a sufficiently sen-

sitive and specific marker to dissociate more than two cell clas-

ses from extracellular recordings.

Functional Dissociation between Cell Classes
We found significant differences of functional properties be-

tween waveform-based cell classes, in terms of firing statistics,

response dynamics, and information coding. For the present

data, no ground truth on cell-class membership was available.

Thus, functional differences provide an important independent

validation of the waveform-based cell classes. In accordance
Current Biology 29, 1–10, September 23, 2019 7
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with the distinct functional roles of the FEF, dlPFC, and LIP,

cell-class-specific response dynamics and information coding

varied substantially across areas [27]. In contrast, baseline

firing statistics were consistently cell-class specific across

brain regions. This confirms the cell-class specificity of baseline

firing statistics reported in previous extracellular [13, 16, 19, 21,

22, 26] and intracellular [11, 28, 36–38] studies. Furthermore,

functionally dissociating four waveform-based cell classes crit-

ically extends previous studies that dissociated only two cell

classes based on extracellular recordings (narrow and broad

spiking) [13, 14, 18, 21, 22]. This provides a powerful new win-

dow to study cortical circuit function in awake behaving

animals.

The present results set the stage for future studies of the func-

tional characteristics of the four identified waveform-based cell

classes. On the one hand, this may entail assessing other mea-

sures of neuronal activity, such as more sophisticated burst-

firing statistics, spectral properties of spiking, and the coupling

of spiking to local and remote neuronal activity. On the other

hand, it will be interesting to investigate how the four identified

cell classes match on other functionally defined categories

such as, e.g., visual, motor, and visuomotor neurons [39].

Physiological Correlates of Cell Classes
What are the physiological correlates of the four identified cell

classes? With more than two classes, we need to consider sub-

types within the excitatory and inhibitory groups. Histological

analyses of monkey dlPFC [35], which examined three electro-

physiological classes and verified their morphology, showed

that broad-spiking RS cells were mostly of the pyramidal type

and narrow-spiking FS cells were to a majority GABAergic basket

and chandelier cells, as classically described (e.g., [10, 28]). A

third intermediate-waveform class consisted exclusively of inhib-

itory interneurons, with a major proportion of ‘‘non-fast-spiking’’

subtypes (neurogliaform and vertically oriented cells), which is in

line with studies in mice using optogenetic labeling of interneuron

subtypes [37, 38, 40]. The fast-spiking, narrow-waveformprofile is

typical of parvalbumin-expressing (PV+) interneurons, which

morphologically are basket cells. Non-PV+ interneuron types,

such as somatostatin-expressing (SOM+) cells, show higher vari-

ance in spike width and firing rate, with some overlap with the FS

profile. Thus, cell class 4 in the present data (broadwaveform, reg-

ular low-rate spiking) likely corresponds to pyramidal cells and cell

class 1 (narrowest waveform, high firing rates, low bursting) likely

corresponds to PV+ fast-spiking interneurons. Class 1 units in LIP

also showed phasic visual-evoked responses (Figure S3), consis-

tent with the short timescale of FS units [38] and stronger stimulus

modulation described for FS cells (in V4 [21]; in the FEF [18, 26]).

Non-FS interneurons are likely captured in cell class 2, which

shows relatively narrow but more dispersed waveform widths

than class 1. The ‘‘intermediate’’ firing rate of class 2 is also in

agreement with studies showing differences in firing between

FS and non-FS neurons in mice [37, 38]. The broad-waveform

class 4 fits the classical description of RS pyramidal cells, being

numerically most abundant in cortex and having low-rate, regular

activity. It is not clear whether class 3 is also part of the excitatory

population. A possible clue is given by the relatively strong bursti-

ness specifically of class 3. We can thus speculate that this

class comprises intrinsically bursting (IB) neurons, an
8 Current Biology 29, 1–10, September 23, 2019
electrophysiologically defined subtype of pyramidal cells that,

despite not exhibiting distinct morphology, has often been distin-

guished from the RS majority based on its atypical firing mode [9,

16, 26, 28].

The proposed correspondence between the four present clas-

ses and physiological cell types is likely to entail some degree of

misclassification. For example, some excitatory corticospinal

neurons in macaque motor and premotor cortex have FS-like

narrow waveforms, with the biggest cells (inferred from axonal

conduction velocity) having the thinnest spikes [41]. It is not

known whether this finding applies to other frontal or parietal

areas and to what extent this may bias classification. Another

case of potential ambiguity between excitatory and inhibitory

classes is constituted by ‘‘chattering cells,’’ a class of narrow-

spiking pyramidal neurons first described in superficial layers

of cat visual cortex that can fire high-frequency repetitive bursts

in response to stimulation [42]. Although there is some evidence

of this cell type in the primate ([26, 43]; but see [44]), its presence

is hard to verify, especially outside of V1 with potentially

sub-optimal stimuli as employed in the present study [42]. Com-

plementary morphological, molecular, or genetic information

[3, 8, 45] is needed to unequivocally identify the different physi-

ological cell types underlying the four cell classes established

here.

Conclusions
Insum,weshowthat four functionallydistinctneuronalcell classes

can be robustly identified from the spike waveformof extracellular

recordings across several cortical regions of awake behaving

monkeys. These results open a powerful new window to dissect

and study the function of cortical micro- and macrocircuits.
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A., Buzsáki, G., Cauli, B., Defelipe, J., Fair�en, A., et al. (2008). Petilla termi-

nology: nomenclature of features of GABAergic interneurons of the cere-

bral cortex. Nat. Rev. Neurosci. 9, 557–568.

8. Tasic, B., Yao, Z., Graybuck, L.T., Smith, K.A., Nguyen, T.N., Bertagnolli,

D., Goldy, J., Garren, E., Economo, M.N., Viswanathan, S., et al. (2018).

Shared and distinct transcriptomic cell types across neocortical areas.

Nature 563, 72–78.

9. Connors, B.W., and Gutnick, M.J. (1990). Intrinsic firing patterns of diverse

neocortical neurons. Trends Neurosci. 13, 99–104.

10. McCormick, D.A., Connors, B.W., Lighthall, J.W., and Prince, D.A. (1985).

Comparative electrophysiology of pyramidal and sparsely spiny stellate

neurons of the neocortex. J. Neurophysiol. 54, 782–806.
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36. Druckmann, S., Hill, S., Schürmann, F., Markram, H., and Segev, I. (2013).

A hierarchical structure of cortical interneuron electrical diversity revealed

by automated statistical analysis. Cereb. Cortex 23, 2994–3006.

37. Avermann, M., Tomm, C., Mateo, C., Gerstner, W., and Petersen, C.C.H.

(2012). Microcircuits of excitatory and inhibitory neurons in layer 2/3 of

mouse barrel cortex. J. Neurophysiol. 107, 3116–3134.

38. Kvitsiani, D., Ranade, S., Hangya, B., Taniguchi, H., Huang, J.Z., and

Kepecs, A. (2013). Distinct behavioural and network correlates of two

interneuron types in prefrontal cortex. Nature 498, 363–366.

39. Bruce, C.J., and Goldberg, M.E. (1985). Primate frontal eye fields. I. Single

neurons discharging before saccades. J. Neurophysiol. 53, 603–635.
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Siegel (markus.siegel@uni-tuebingen.de). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Two, adult monkeys (Macaca mulatta) were used in this study: one male (11 years old), and one female (10 years old) weighing about

9 kg and 5 kg, respectively. They were both experimentally naive, pair-housed, on a 12-hr day/night cycle, and in a temperature-

controlled environment (80�F). Experiments were performed in a dedicated laboratory around the middle of their light cycle. Each

monkey was surgically implanted with a titanium post for head restraint and three cylindrical 20-mm diameter titanium recording

chambers. The sterile surgery was performed under general anesthesia. Post-surgical pain was controlled with an opiate analgesic.

Chambers were stereotaxically placed based on coordinates from structural MRI scans in each monkey.

During training and experimental testing, the animals were allowed to obtain water through the behavioral task to the point of

satiety each day. Satiety was indicated when themonkey will no longer perform the behavioral task. Animals that failed to obtain their

normal amount of water on any given day were supplemented. Good health was ensured by keeping daily records of weight, carefully

monitoring the monkey’s physical state, supplementing the diet with fresh and dried fruit to ensure adequate nutrition, and providing

regular intervals of free access to water.

The animals were handled in accord with National Institutes of Health guidelines and approved by the Massachusetts Institute of

Technology Committee on Animal Care. MIT veterinary staff continuously assessed the welfare of the animals prior to, during, and

after the experiment. No adverse events occurred, and no procedural modifications were necessary.

METHOD DETAILS

Electrophysiological recordings
We briefly review the electrophysiological recording methods here. Further details on the electrophysiological recordings can be

found in [27]. Extracellular signals were recorded in 70 recording sessions in two rhesus monkeys using Tungsten microelectrodes

simultaneously inserted in FEF, dorso-lateral PFC, and LIP. Electrodes were lowered in pairs (1 mm spacing) or triplets (0.7 mm trian-

gular spacing) using custom microdrive assemblies. Electrodes were inserted without targeting of a specific cortical depth, were

acutely inserted into the brain and removed at the end of each daily experiment. Broad-band extracellular signals were recorded

at a sampling rate of 40 kHz and then bandpass-filtered between 0.5–6 kHz to extract spiking activity. The dataset partially overlaps

with the multiunit data analyzed in [27].

Behavioral task
During the recordings,monkeys performed a flexible visuomotor decision-making task. Each trial startedwith a ‘baseline’ period last-

ing 0.5 s during which the monkey maintained central fixation. This was followed by a 1 s ‘cue’ period in which a visual cue stimulus

was shown to indicate the condition of the upcoming task. Cue stimuli were four different shapes, two of which cued a motion

discrimination task and two a color discrimination task. Depending on the cue, the task consisted in judging either the motion direc-

tion (up versus down) or color (green versus red) of a random dot stimulus presented after the cue. The monkeys responded with a

leftward or rightward saccade within 3 s after stimulus onset.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Waveform preprocessing
To obtain spike waveforms, we extracted segments of the filtered voltage traces in a window of 3 ms around each noise threshold-

crossing (4 SD; 1 ms before crossing) aligned on the main trough of the waveform. The noise level (SD) was robustly estimated as

0.6745 times the median of the absolute of the filtered data. The minimum duration between 2 threshold-crossings that triggered

a waveform was 1ms. Spike waveforms were trough aligned after spline-based up-sampling. Spike sorting was performedmanually

offline using Plexon Offline Sorter. Single-unit isolation was assessed by an expert user (CvN) and judged according to a quality (QI)

index with 4 scales (1: very-well isolated single unit, 2: well isolated single unit, 3: potential multi-unit; 4: clear multi-unit). Only units

with quality index 1 and 2 were included in the analysis.

We used principal components (PC) 1 and 2 of the spike waveform as well as the nonlinear energy function of the spike as axes in

3D sorting space. The manual 3D clustering was separately and dynamically performed in a sliding window throughout each

recording session and for each electrode. Thus, clusters could move across time. We carefully looked for elongated waveform-clus-

ters that often reflect bursting and paid attention not to artificially split these into multiple units. A putative single unit had to exhibit

clear separability of its cluster in this 3D feature space, was only defined as long as it could be separated from other waveforms or

clusters across time and had to show a clean stack of individual waveforms in its overlay plot.

We analyzed the average spike waveform of each well-isolated single unit. Waveforms were up-sampled and normalized on their

amplitude. To exclude axonal spikes and temporally overlapping spike as well as to ensure that the two employed waveform-clas-

sification metrics (trough-to-peak and time-to-repolarization; see below) were valid and robust, we excluded waveforms that

satisfied any of three criteria for atypical shape: (1) the amplitude of the main trough was smaller than the subsequent positive

peak (n = 41), (2) the trace was noisy, defined as > = 6 local maxima of magnitude > = 0.01 (n = 38), (3) there was one or more local

maxima in the period between the main trough and the subsequent peak (n = 35).

To assess the effect of sorting quality, in addition to the above subjective sorting quality index QI, we quantified for each well-iso-

lated single unit the Mahalanobis distance of its average waveform to the cluster of all unsorted noise-waveforms of the same elec-

trode and recording. TheMahalanobis distancewas computed in 2 dimensions based on the same first 2 PCs of the spike waveforms

that were employed for spike sorting.

Waveform clustering
As features for cell class classification, we computed two measures of waveform shape: trough-to-peak duration and time for repo-

larization. Trough-to-peak duration is the distance between the global minimum of the curve and the following local maximum. Time

for repolarization is the distance between the late positive peak and the inflection point of the falling branch of the curve [12, 28].

All preprocessed waveforms (n = 2488) were scored on the two measures to obtain a two-dimensional feature space for classifi-

cation. To identify clusters in the data in an unsupervised way, we used the expectation-maximization (EM) algorithm for Gaussian

mixture model (GMM) clustering. We modeled the data as a weighted sum of multivariate Gaussians:

PðxÞ=
X
k

pk Nðx jmk ;SkÞ

with k components parametrized by mean m, covariance S and mixing coefficient p. The EM algorithm fits this model by iteration of a

two-step process: it first estimates posterior probabilities of the data given the current set of parameters (E step), and then updates

the parameters to maximize the log-likelihood function of themodel given the current estimates (M step). The steps are repeated until

convergence. We initialized the process with random parameters for 50 repetitions and chose the fit with the largest log-likelihood

among the replicates.

To select the number of Gaussian components in the model we used the Bayesian information criterion (BIC) [47]:

BIC = � 2 ln Pðx j qÞ+K lnðnÞ
where Pðx j qÞis the maximized likelihood for the estimated model, K is the number of parameters, and n is the sample size. By

including a penalty term that grows with the number of parameters, the BIC cost function effectively favors simpler models and re-

duces overfitting. The optimal number of clusters was chosen as the value that minimized the BIC computed between 2 and 10

components.

After fitting the model, we determined cluster memberships by ‘hard’ assignment: each unit was assigned to the class associated

with the highest posterior probability.

Given the initial clustering outcome, we excluded one high-variance cluster (‘noise cluster’) that captured thewaveforms dispersed

around the high-density axis of the data cloud (n = 212). We also excluded units that were outliers of the whole data cloud, defined as

having Mahalanobis distance large than 5 from the centroid of the Gaussian cluster they were assigned to (n = 69). After outlier rejec-

tion, we re-ran the clustering (including the BIC analysis for choosing number of components) to obtain the final cell class

classification.

To assess the degree of cluster separation, we calculated the overlap between GMM components using a Monte Carlo approach.

We randomly generated 10000 data points from the fitted GM distribution and compared, for each data point, the true cluster from

which the observation was drawn with the class to which it was assigned. The outcome of this comparison can be represented by a
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confusion matrix, where the off-diagonal terms provide empirical estimates of the area of overlap between the GMM components.

Overall class separation was quantified as the mean of the diagonal probabilities of the confusion matrix.

This method was extended to assess the similarity of the clustering schemes obtained for individual cortical areas. For each pair of

areas A andB, 10000 data points were randomly drawn from the GMdistribution of area A and assigned to classes defined on theGM

distribution of area B. The confusion matrix shows, for area A’s data, the true generating cluster against the assigned class label. For

all area pairs, overall class similarity was quantified as the mean of the diagonal probabilities of the corresponding confusion matrix.

To assess how to the number of identified clusters depends on the number of neurons, we repeated the clustering analysis after

randomly sub-sampling the original data. For each sub-sample size, we repeated the analysis 100 times. For each sub-sample, we

performed the same 2-step approach as for the complete data. Given the initial clustering outcome, we excluded a ‘noise-cluster’

with the highest ratio of 2D-variance over proportion of assigned cells if there were more than 2 initial clusters and if not most cells

were assigned to the putative noise cluster. We also excluded outliers with a Mahalanobis distance large than 5 from their corre-

sponding cluster-centroid. Then, we re-ran the clustering and performed the BIC analysis for choosing the final number of clusters.

Analysis of firing statistics
To characterize spontaneous activity, we analyzed spiking activity during the baseline fixation period. We averaged across baseline

periods of all trials. We computed four firing statistics: mean firing rate across trials (FR), Fano factor (variance over mean of spike

counts across trials, FF), coefficient of variation of the inter-spike interval distribution (CVISI) and burst index (BI). Both Fano factor

and CVISI are mean-standardized measures of dispersion that reflect firing regularity, with an expected value of 1 for Poisson firing

and values below 1 indicating more regular firing [31]. The burst index was defined as the ratio between the observed proportion of

bursts, defined as inter-spike intervals < 5 ms, and the proportion of bursts expected from a Poisson process with equal mean rate

[13]. This measure quantifies the tendency to fire in bursts unbiased by firing rate. To avoid under-sampling, we only computed the

burst index for units with more than 50 inter-spike intervals pooled across all trials (n = 1388 units), which excluded neurons with very

low firing rates.

We tested for significant differences in activity between cell classes using a one-way ANOVA on each firing statistic. All measures

were log-transformed to optimize normality. To control for the unequal regional distribution of cell classes, we randomly subsampled

the data to have equal cell class proportions in the three areas (‘area-stratified datasets’). The ANOVA F-statistic was computed as

the ratio of mean square between andmean squared error. Both numerator and denominator were calculated on 1000 area-stratified

subsamples and then averaged across subsamples, so that the F-ratio was obtained from the two averaged quantities. For post hoc

comparisons, we computed pairwise t tests using the average difference of means and the average pooled standard error across

1000 area-stratified subsamples. We corrected for multiple tests using False Discovery Rate (FDR) [48] correction.

Multivariate decoding
We performed cell class decoding using Support Vector Machine (SVM) classification on several different feature sets. For all feature

sets, decoding was performed on 50 area-stratified subsamples (where cell class proportions were matched across cortical regions

by random subsampling) and averaged across subsamples to obtain the final classification estimate.

Classification procedure

To reduce the multiclass problem to binary classification, we independently trained and tested six binary SVMs for each pair of cell

classes. The six sets of predicted labels were combined by majority vote (‘one-versus-one’ classification); in case of ties, one of the

two winning classes was chosen at random. The SVM algorithm employed a Gaussian radial basis function kernel with a scaling fac-

tor of 1.

Each binary classifier was evaluated using 10-fold cross-validation. Within each classifier, we randomly subsampled the data such

that both cell classes had N equal to the minimum sample size across all cell classes. Equal cell class proportions were preserved in

each cross-validation fold’s training and test set, so that chance-level classification performance for a given test set was always 0.5.

By using the global minimum of sample sizes across cell classes, we also ensured that all pairwise classifiers had comparable signal-

to-noise ratio. This stratification procedure was repeated 100 times and the estimates were combined by majority vote.

Classification outcome was summarized in a confusion matrix of probabilities based on the average counts over 50 area-stratified

datasets. Counts were divided by true class total counts to obtain the probability of predicting each class given the true label. Each

class was considered to be decodable if its true positive rate was significantly greater than chance level of 0.25 in a binomial test,

corrected for four tests using FDR correction. As a summary measure of the confusion matrix, we quantified classifier accuracy

as the average true positive rate across cell classes (mean of the diagonal of the confusion matrix).

Cross-area classification

To assess area specificity of cell class decoding, we trained classifiers on data from one cortical area and used them to predict data

from other areas. We matched areas’ signal-to-noise ratio by creating 50 randomly subsampled datasets for which all areas had the

same number of observations, equal to the minimum N across the three areas. A separate classification instance was run for each

subsample, and the resulting 50 confusion matrices of counts were averaged.

To test for significance of cross-area classification performance, we used a permutation test that compared the observed accuracy

with an empirical null distribution. The null distribution was constructed by training classifiers with randomly permuted class labels.
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We ran 1000 instances of null classifiers, each resulting from the average across 20 area-stratified subsamples. The observed ac-

curacy was declared significant if it exceeded the accuracy values of 1000 label-shuffled classifiers at p < 0.05, FDR-corrected

for 9 tests (3*3 cross-area classifiers).

Area specificity was computed from the 3-by-3matrix of cross-area classification accuracy as the ratio between the average of the

diagonal and the average of the non-diagonal values.

Linear Discriminant Analysis for feature importance estimation
For the dataset comprising all features (four baseline firing statistics, PSTH, cue information) we also trained a Linear Discriminant

Analysis (LDA) classifier using the same procedure described above for the SVMs. To quantify each feature’s contribution to the de-

coding, we computed FIRM (Feature Importance RankingMeasure) using the simplified formulation for unregularized OLS regression

[49, 50]:

FIRM=D�1 covðX; yÞ
whereD is a diagonal matrix of standard deviations of the features, X is the training data matrix, and y is the vector of true class labels

of the training data (recoded as +1 and �1). As discussed in [50], FIRM for linear decoding can be approximated by the covariance

between the data and the labels, effectively reducing to a univariate analysis on each feature. The normalization by D ensures that

FIRM is invariant to feature scaling. As our measure for feature importance we considered the magnitude (absolute value) of FIRM.

Principal component decomposition of PSTH
Peristimulus time histograms (PSTH) of single-unit spike counts were computed using 50 ms bins, within a 1.5 s trial window

comprising the 0.5 s baseline fixation period and the 1 s cue period. Each unit’s PSTH was z-scored on the mean and standard de-

viation of the baseline period across trials.

To test if the response dynamics captured by the PSTHs predicted, i.e., differed between, cell classes, we extracted low-dimen-

sional features from the PSTHs. This primarily served to enhance statistical power, rather than to characterize the response dynamics

themselves. These response dynamics are directly shown as the averages of PSTHs for each cell class (Figure 4B) and region (Fig-

ure 4E). We extracted low-dimensional PSTH features using Principal Component Analysis (PCA). The number of significant principal

components was determined using cross-validation [51]. For each number of PCs k, we fit a PCA to one portion of the data (‘training’

set) and, using the first k components, we reconstructed the left-out data (‘test’ set). Importantly, to obtain reconstructions that were

truly independent from the data, we excluded in turn each variable from the fitting on the training set, and that variable only was pre-

dicted for the test set observations. Using 10-fold cross-validation, a predicted value was calculated for each data point. The overall

prediction error was calculated as the sum of squared differences between true and reconstructed data points (PRESS, Prediction

Residual Error Square Sum) as a function of number of components:

PRESSðkÞ=
XI

i = 1

XJ
j = 1

 
x
ðiÞ
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�
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with k number of PCs, data samples xij having number of observations I and number of variables J, and P being the J3 J matrix of

PCA coefficients, with columns corresponding to principal components. The number of significant components was chosen as the

global minimum of the PRESS curve.

PCA feature extraction, including selection of number of PCs, was performed independently on each of the 50 area-stratified data-

sets for cell class classification. For cross-area classification, the PCA transformation was estimated on the training area only and

then applied to data of the test area.

Cue information
Cue information was quantified as the effect size of the cue-factor in a 7-way ANOVA computed on the late cue period of the trial

(500–1000 ms after cue onset) [27]. Effect size was quantified by the u2 statistic, an unbiased estimator of the variance explained

by an ANOVA factor independently from all others factors in the model [52]:

u2 =
SSbetween � df �MSE

SStotal +MSE

where SSbetween is the between-groups sum of squares, df is the degrees of freedom, SStotal is the total sum of squares, andMSE is

the mean squared error. The first three factors of the ANOVA corresponded to the cue of each trial grouped into two levels according

to all three possible pairwise pairings of the four task cues.We computed cue information as the average explained variance of all first

three factors [27]. Thus, the cue information assessed here, was only about the four cue identities and did not allow for inferences on

information about the motion or color task. The remaining 4 factors of the ANOVA were the motion direction of the random-dot stim-

ulus, the color of the random-dot stimulus, the response of the animal on the current trial, and the response on the previous trial.

To control for linear dependencies between cue information and activity measures, we took the residuals of cue information after

regressing out the four baseline firing statistics (firing rate, Fano factor, coefficient of variation of the ISI distribution, burst index).
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Cell class differences in cue information were assessed with a one-way ANOVA using the same procedure employed for the firing

statistics: the data was subsampled 1000 times to match cell class proportions across cortical areas, and the F-ratio was calculated

from the averages of the numerator and denominator across subsamples. Post hoc pairwise comparisons between classes were

similarly evaluated taking the average numerator and denominator of the t-statistic.

Sorting quality
To rule out a potential confound due to a difference in sorting quality between cell classes, we repeated the cell-class decoding after

equating sorting quality across cell classes. To this end, we independently stratified the data to equate either the sorting quality index

QI or the Mahalanobis-distance distribution between cell classes. For both measures, we repeated the stratification 20 times and

averaged the results. We stratified QI by randomly removing units from each class such that the proportion of cells with QI = 1

and QI = 2 cells was the same for all cell classes. QI stratification excluded 306 units (13.7% of sample). We stratified the

Mahalanobis-distance by randomly removing units from each class such that the Mahalanobis-distance distributions were matched

between all classes. Mahalanobis-distance stratification excluded on average 1577 units (70.6% of sample).

DATA AND CODE AVAILABILITY

The data and code supporting the current study have not been deposited in a public repository because of ongoing projects but are

available on request by contacting Earl K. Miller (ekmiller@mit.edu).
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