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Abstract

■ Theta (2–8 Hz), alpha (8–12Hz), beta (12–35Hz), and gamma
(>35 Hz) rhythms are ubiquitous in the cortex. However, there
is little understanding of whether they have similar properties
and functions in different cortical areas because they have rarely
been compared across them. We record neuronal spikes and
local field potentials simultaneously at several levels of the
cortical hierarchy in monkeys. Theta, alpha, beta, and gamma

oscillations had similar relationships to spiking activity in visual,
parietal, and prefrontal cortices. However, the frequencies in all
bands increased up the cortical hierarchy. These results suggest
that these rhythms have similar inhibitory and excitatory func-
tions across the cortex. We discuss how the increase in frequen-
cies up the cortical hierarchy may help sculpt cortical flow and
processing. ■

INTRODUCTION

Theta (2–8 Hz), alpha (8–12 Hz), beta (12–35 Hz), and
gamma (>35 Hz) are common across the cortex (Hari,
Salmelin, Mäkelä, Salenius, & Helle, 1997; Gray, Engel,
König, & Singer, 1990; Berger, 1929). Alpha/beta and
gamma tend to be anticorrelated and have been associated
with different functions. Increases in gamma power occur
during sensory inputs/motor outputs, whereas increases in
alpha/beta occur during top–down control and inhibition
(Lundqvist et al., 2016; Bastos et al., 2015; van Kerkoerle
et al., 2014; van Ede, de Lange, Jensen, & Maris, 2011;
Fisch et al., 2009; Buschman & Miller, 2007; Jokisch &
Jensen, 2007; Gray et al., 1990; Pfurtscheller & Aranibar,
1977). For example, in themotor cortex, beta power is high
and gamma power is low when movements are inhibited,
but this reverses when movement is released (Schmidt
et al., 2019; Cheyne, Bells, Ferrari, Gaetz, & Bostan, 2008;
Brovelli et al., 2004; Pfurtscheller, Stancák, & Neuper,
1996). In the visual cortex, gamma power is high and alpha
power is low during sensory stimulation, and vice versa for
representations outside focal attention (Bollimunta, Mo,
Schroeder, & Ding, 2011; Buffalo, Fries, Landman, Buschman,
& Desimone, 2011; Rohenkohl & Nobre, 2011; van Ede
et al., 2011; Fisch et al., 2009; Jokisch & Jensen, 2007;
Fries, Reynolds, Rorie, & Desimone, 2001; Klimesch,
Doppelmayr, Russegger, Pachinger, & Schwaiger, 1998;
Gevins, Smith, McEvoy, & Yu, 1997; Gray et al., 1990;
Pfurtscheller & Aranibar, 1977). In pFC, bursts of gamma
are associated with sensory information maintained in
working memory (Bastos, Loonis, Kornblith, Lundqvist,
& Miller, 2018; Lundqvist, Herman, Warden, Brincat, &

Miller, 2018; Lundqvist et al., 2016). They are anticorre-
lated with alpha/beta bursts that decrease during encoding
of sensory information in working memory and increase
when working memory is cleared.

Given the ubiquity of these rhythms and their apparent
push–pull relationship, it would be important to know how
they compare across cortical areas. Any preserved attri-
butes of the rhythms would suggest shared roles in cortical
processing, whereas differences can provide insights into
any functional differences across the cortical hierarchy.
There is some evidence for differences. The lower rhythms
skew toward alpha/low beta in the sensory and parietal cor-
tex and toward higher beta in the motor cortex and pFC,
albeit in comparisons across different studies and species
(Lundqvist et al., 2016; Bollimunta et al., 2011; Buschman&
Miller, 2007; Jokisch & Jensen, 2007). These differences
could therefore be because of differences in task, species,
and/or recording techniques. Few studies have compared
multiple levels of the cortical hierarchy using multiple in-
tracranial electrodes that allow good localization of local
field potentials (LFPs) as well as their relationship to neu-
ronal spiking.

We recorded spikes and LFPs simultaneously along the
cortical visual hierarchy as monkeys performed a visual
working memory task. We analyzed LFPs and multiunit
activity (MUA). This revealed a similar functional relation-
ship between spiking and alpha/beta and gamma power
across cortical areas. Alpha/beta power was lower during
encoding and retention of information and anticorrelated
with spiking activity and gamma across time and recording
sites. Both types of rhythms occurred in bursts, not sus-
tained increases in power. Gamma was associated with
spiking carrying sensory information; alpha/beta was nega-
tively correlated with spiking. The peak frequencies of both
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rhythms increased as the cortical hierarchy was ascended
from sensory cortex to pFC.Moreover, theta (2–8Hz) often
couples with gamma rhythms (Schroeder & Lakatos, 2009;
Tort, Komorowski, Manns, Kopell, & Eichenbaum, 2009;
Canolty et al., 2006). We found theta power was most
pronounced in the higher areas, correlated positively with
spiking, and was also of a gradually higher frequency as-
cending the cortical hierarchy. This suggests that interac-
tions between alpha/beta and gamma are preserved across
the cortex and may play a general role in regulating expres-
sion of information by cortical neurons.We discuss the com-
putational implications of the gradual increase of these
frequencies up the cortical hierarchy.

METHODS

Experimental Design

Using positive reinforcement, we trained monkeys to per-
form a visual search task with a memory delay (Figure 1A).
Monkeys fixated a point at the center of the screen (fixation
window radius: 2–3 visual degrees) for a duration of 1 sec.
Then, one of three sample objects was presented at the
center of gaze for 1 sec. Then, monkeys maintained central
fixation over a delay (between 0.5 and 1.2 sec; in some

sessions (47/81), held fixed at 1.2 sec). A search array then
appeared. It consisted of an object thatmatched the sample
together with either one or two distractor objects pre-
sented at the same eccentricity (3°–8°) but in different
visual quadrants as the sample. The position of the match
and the distractors were always randomly chosen. Monkeys
were rewarded if they made a direct saccade to the match.
Monkeyswere trained on this task using a library of 22 sample
objects. For recordings, we used a subset of these objects
(12), choosing three per session. The monkeys performed
the task with blocks in which the sample was either ran-
domly chosen trial-by-trial or held fixed. Only the data with
trial-by-trial cuing, requiring engagement of working
memory, were used, and only the 81 sessions with at least
70 correctly performed trials were included.

Animal Models

Two adult rhesus macaques (macaca mulatta) were used in
this study (Monkey S: 6 years old, 5.0 kg; Monkey L: 17 years
old, 10.5 kg). Both animals were pair-housed on 12-hr
day/night cycles andmaintained in a temperature-controlled
environment (80°F). All procedures were approved by the
Massachusetts Institute of Technology IACUC and followed

Figure 1. Task structure and baseline power. (A) Animals were to fixate at the center of the screen up until the response. A memory cue was
presented foveally followed by a memory delay (0.5–1.2 sec). After the delay, two to three items were presented peripherally, and the animals were to
saccade to the item that had been presented as a memory cue. (B) Power spectrum from the middle of the fixation period (600–300 msec before
stimulus onset) from V4 (red), LIP (blue), and pFC (black). Shaded areas show SEM.
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the guidelines of the Massachusetts Institute of Technology
Animal Care and Use Committee and the U.S. National
Institutes of Health.

Data Collection

All of the datawere recorded throughBlackrock headstages
(Blackrock Cereplex M), sampled at 30 kHz, band-passed
between 0.3 Hz and 7.5 kHz, and digitized at a 16-bit,
250 nV/bit. All LFPs were recorded with a low-pass 250-Hz
Butterworth filter, sampled at 1 kHz, and AC-coupled.
We implanted the monkeys with three recording wells

placed over visual/temporal, parietal, and frontal cortices.
We kept 64 sessions with multicontact (“U probes” and
“V probes” from Plexon) probes and 17 sessions with acute
single-tip electrodes. In each session using multicontact
probes, we inserted between one and three laminar probes
into each recording chamber with either 100- or 200-μm
intersite spacing and either 16 or 32 total electrodes per
probe. Between three and seven probes in total per session
were used, with a total channel count ranging between 48
and 128 electrodes per session. The recording reference
was the reinforcement tube, which made metallic contact
with the entire length of the probe (total probe length from
connector to tip was 70 mm).
We used a number of physiologic indicators to guide our

electrode placement, as previously described (Bastos et al.,
2018). First, the presence of a slow 1- to 2-Hz signal, a heart-
beat artifact, was often found as we pierced the pia mater
and just as we entered the gray matter. Second, as the first
contacts of the electrode entered the gray matter, themag-
nitude of the LFP increased, and single units and/or neural
hash became apparent, both audibly and visually with
spikes appearing in the online spike threshold crossing.
Once the tip of the electrode transitioned into the gray
matter, electrodes were lowered slowly by an additional
∼2.5 mm. At this point, we retracted the probe by
200–400 μm and allowed the probe to settle for between
1 and 2 hr before beginning the task. We left between one
and three contacts out of graymatter in the overlying cerebral
spinal fluid. These contacts were not used in the analysis.

Preprocessing

For the analysis of the analog MUA, we band-pass filtered
the raw, unfiltered, 30-kHz sampled data into a wide band
between 500 and 5000 Hz, the power range dominated by
spikes. The signal was then low-pass filtered at 250 Hz and
resampled to 1000 kHz. The advantage of this signal is that
it captures all nearby units, including those with a low
signal-to-noise ratio that would not be capturedwith a strict
threshold. A subset of contacts had apparent artifacts.
These contacts were automatically removed (16/768 in lat-
eral intraparietal cortex [LIP], 12/2252 in pFC, and 120/1538
in V4 [most from the same session]) from the analysis by
setting a threshold (100% above the mean) on the power
between 1 and 5 Hz.

Analysis and Statistical Tests

All analysis was performed using MATLAB. We estimated
power at all frequencies from 2 to 150 Hz using Morlet
wavelets (five cycles, estimated each millisecond), with
81 frequencies (six octaves) of interest distributed on a log-
arithmic scale.

We correlated MUA and power using neighboring con-
tacts to avoid spike bleed-through to drive correlations in
the gamma band. Correlations were calculated for each
frequency of interest, and we used Bonferroni correction
to take this into account when calculating statistics. This
was also the case for multiple pairwise t tests between area
pairs.

To determine stimulus selectivity, we used bias-corrected
percentage explained variance (PEV; Lundqvist et al., 2016;
Olejnik&Algina, 2003).MUAwas smoothed using 100-msec
rectangular windows. For each 1-msec time point, a one-way
ANOVA test was performedwith trials grouped based on the
sample cue identity. Nonbiased PEV was used to avoid
nonzero means for small sample sizes.

We correlated the time course of trial-averaged signals
(power vs. MUA or power vs. PEV in MUA) for each elec-
trode. For correlations over time, we used the last 500msec
of fixation, the 1000 msec of sample presentation, and the
first 700 msec of the delay (not using trials with less than
700-msec delays). We also correlated, across electrodes,
the change in MUA to the change in power from one epoch
to another to determine relationships at the single elec-
trode level. For this, we used Spearman’s ranked correla-
tions using the epoch averages per electrode. For power
modulation by task (Figure 2), −700 to −300 msec was
used for prestimulation and 200–1000msec for stimulation,
where 0 msec is the time of stimulation onset, to avoid
frequency smoothing cross talk between the epochs and
frequencies of interest.

To find spike–power relationships that did not depend on
shared epoch preferences between the two measures, we
calculated correlations between neighboring pairs of MUA
and power and compared it to the correlations between
random pairs of MUA and power (taken across all sessions
but within each area). The correlations between random
pairs were carried out 1000 times to estimate a distribution
that was then compared to the original correlations.

Burst Detection

Power displayed strong fluctuations on a single-trial level,
only exceeding baseline levels during brief burst events.
To extract these, we used a procedure developed earlier
(Lundqvist et al., 2016). In short, we used the fixation pe-
riod as baseline to calculate mean and standard deviation
in each bandof interest (beta, 6–35Hz;Gamma 1, 40–65Hz;
Gamma 2, 55–90 Hz; Gamma 3, 70–100 Hz). We used a
sliding window of 10 trials to calculate the mean and stan-
dard deviation used for each trial. In a first step, candidate
bursts were extracted if the average power within a given
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band exceeded the threshold (set at 2 SDs above themean
of 10 trial average) for at least two cycles (based on the
central frequency of each band).

Furthermore, we extracted the time–frequency repre-
sentation of the signal in the spectrotemporal neighbor-
hood of each burst using the wavelets. We resorted to
fitting 2-D Gaussian function to the local time–frequency
map to specify the aforementioned neighborhood.
Finally, we defined the burst length as a time subinterval
where the average instantaneous power was higher than
half of the local maximum (half-power point). The burst in-
tervals were extracted for the alpha/beta band (6–35 Hz)
and three gamma subband oscillations (40–65, 55–90,
and 70–100 Hz) from each trial, along with the central
frequency of each burst and the frequency width. The fre-
quency width of bursts was estimated analogously to their
duration: the frequency range where the spectral power

component did not fall below 50% of the local maximum
(epicenter of the burst’s power). We could then select
bursts within a more narrow range than described by the
original bands. The central frequency of each burst was
used when correlating duration of bursts with their fre-
quency. To determine burst durations of specific bands,
we only included bursts with their central frequency within
a certain range of the average peak for that frequency band
and area. For alpha/beta, we used ±4 Hz; and for gamma,
±10Hz. We used bursts from the first 70 trials for each ses-
sion to get nonbiased estimates.

Data Availability

The data and code will be made available by reasonable
request by contacting the corresponding author, Earl
Miller (ekmiller@mit.edu).

Figure 2. Stimulus-induced power. A shows stimulus-induced power (stimulus [stim]/prestimulus [prestim] power; see Methods) for V4 (top, red), LIP
(center, blue), and pFC (bottom, black). (B) Zoom in on the beta suppression (top) and transition from beta to gamma (center) and gamma peaks
(bottom) for V4 (red), LIP (blue), and pFC (black). Note that the peaks and beta troughs are normalized to 1 for easier comparison between areas in the
plots in B. Shaded areas show SEM.
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RESULTS

Increase of Frequencies Up the Cortical Hierarchy

Two rhesus macaques performed a delayed-match-to-
sample task (Figure 1A). We simultaneously recorded
LFPs and MUA from V4 (n = 1418 recording sites), LIP
(n = 752), and pFC (n = 2240).
Themean peak frequency of oscillatory power increased

up the cortical hierarchy. Figure 1B shows the average LFP
power spectrum of each cortical area during a baseline in-
terval just before presentation of the sample stimulus (see
Methods). Each area was dominated by oscillations in the
alpha (8–12 Hz) and beta (12–35 Hz) ranges (Figure 1B).
The lack of a gamma peak was because of the lack of
bottom–up sensory inputs, which are associated with
increases in gamma power (Gray et al., 1990). The peak
frequency of alpha/beta increased from V4 (11 Hz) to LIP
(15 Hz) to pFC (19 Hz; all across-areas comparisons had
significantly different means at p < 10−30, unpaired t test
corrected for multiple tests, using a frequency between 7
and 40 Hz with the maximum amplitude as peak at each
recording site).
Themodulation of oscillatory power by stimulus presen-

tation also increased in peak frequency up the cortical
hierarchy. We established the “functionally defined”
frequency bands in each area by determining how each
frequency was modulated by presentation of the sample
stimulus. To do so, power per frequency during sample
presentation was divided by the power per frequency
during the baseline. The result showed that sample presen-
tation suppressed alpha/beta power and increased gamma
power (Figure 2). Note that the frequency of maximum
suppression of alpha/beta matched the baseline peak
frequency for each area. As such, it also increased from
V4 (11 Hz) to LIP (16 Hz) to pFC (20 Hz; all across-areas
comparisons had significantly different means at p< 10−15,
unpaired t test corrected for multiple tests on the frequency
of maximal decrease per electrode). The peak of average
gamma power also increased in frequency from V4 (65 Hz)
to LIP (72 Hz) to pFC (80 Hz; Figure 2). We defined the
transition between beta and gamma as the first frequency
with positive modulation by stimulus presentation. This
transition also occurred at gradually higher frequencies
as the cortical hierarchy was ascended (Figure 2B, center;
V4: 26 Hz, LIP: 40 Hz, pFC: 47 Hz, all across-areas compar-
isons had significantly different means at p < 10−15 using
unpaired t test corrected for multiple tests).

Spiking Was Correlated with Changes in
Oscillatory Power

Increases in spiking were associated with increases in
gamma and theta power and decreases in alpha/beta
power. We examined the correlation between changes in
MUA and oscillatory power across time (over three task
epochs: baseline, sample presentation, andmemory delay).
The level of MUA was positively correlated with changes in

functionally defined (i.e., stimulus modulated; see above)
gamma power and anticorrelated with changes in function-
ally defined alpha/beta power (Figure 3A; note that MUA
and LFPs from neighboring, not the same, electrodes were
used to avoid bleed-through effects). In LIP and pFC, but
not V4, there was also a positive correlation between
changes in theta power and level of MUA (Figure 3A).

The peak frequency of maximal negative correlation be-
tween LFP power in the alpha/beta band andMUA gradually
shifted toward higher frequencies from V4 to LIP to pFC
(Figure 3A). Likewise, we defined the frequency of transi-
tion between gamma and beta as the lowest frequency
above 15 Hz with a significant positive correlation with
spiking (see Methods). This also increased in frequency
up the cortical hierarchy from V4 (26 Hz), LIP (33 Hz), to
pFC (39 Hz; all means significantly different at p < 10−15

using unpaired t test, corrected for multiple tests). As a
result of the changes in frequencies, the frequencies of
(positively correlated) gamma in V4 overlapped with (neg-
atively correlated) beta in pFC and pFC (positively corre-
lated) theta overlapped with V4 (negatively correlated)
alpha/beta (Figure 3B). Note that the correlation between
spiking and gamma did not increase monotonically with
frequency. Instead, it peaked below the maximum fre-
quency tested (150 Hz). This suggests that the positive
correlations were not because of spikes bleeding into
the power spectrum (along with the fact that we used only
spikes from neighboring electrodes). Similar results were
obtainedwhenwe correlated stimulus information inMUA
(instead of spike rate) and power (Figure S2).

The correlation between changes inMUA and oscillatory
power was not indirect, a by-product of both changing in
response to external events (e.g., stimulus onset or offset).
Rather, the correlation was direct. To show this, we per-
formed the same analysis but using MUAs and LFPs from
randompairs of electrodes fromeach area instead of neigh-
boring pairs. Any correlation between such random pairs
was attributed to correlation because of them both re-
sponding to external events, not a direct correlation. To
determine direct correlation, we computed when the
average correlation between MUA and LFPs in neighboring
electrode pairs exceeded that of the average correlation
between random pairs (permuted 1000 times). This
revealed significant direct correlations ( p < .01), albeit
more narrow-band in the alpha/beta domain (Figure 3A,
red/blue/black bars). The negative correlations between
LFP and spiking were now seen around the peak frequency
of the alpha/beta power for each region, whereas gamma
remained broadly correlated with spiking. Overall, the pat-
terns of correlations suggested that functionally similar
frequency bands (excitatory gamma and theta, inhibitory
alpha/beta) in all areas gradually shifted toward higher
frequencies up the cortical hierarchy (Figure 3A; but no
theta in V4).

We also compared, between electrodes, the correlations
between the change in LFP power and the change in MUA
from fixation to the memory delay period (Figure 4, using

Lundqvist, Bastos, and Miller 5



Spearman’s ranked correlation; bars show significance at
p < .01, Bonferroni corrected for multiple comparisons).
This showed that the recording sites with the largest de-
creases in alpha/beta power during the memory delay also
had the highest increases in spiking during that time. In
this analysis, theta was positively correlated with spiking
in V4 (unlike the other analyses, see above). A similar pat-
tern was seen if the correlation was performed between
change in power and change in spiking from baseline to
sample stimulus presentation (instead of change from fix-
ation to delay; Figure S2).

Differences in Delay Activity across the
Cortical Hierarchy

During sample presentation, alpha/beta power was sup-
pressed relative to baseline in all areas but, toward the
end of the presentation, less in V4 than in LIP and pFC
(Figure 5A, using 12–26 Hz for all electrodes as this was
the alpha/beta range shared by all areas). During the
memory delay, alpha/beta power was highest in V4, second
highest in LIP, and lowest in pFC (all areas significantly dif-
ferent at each time point at p< .01, corrected for multiple

Figure 3. Correlation between power and MUA. (A) The correlation (over time, including 500 msec before stimulus onset until end of the delay)
between power in each frequency band and MUA. Orange bars mark frequencies with a significant correlation ( p < .01, t test for nonzero mean,
Bonferroni corrected). Red/blue/black bars mark frequencies with a significantly stronger correlation between power and MUA for neighboring
electrodes compared to randomized pairs (permutation test, p < .01). This was used to control for shared task epoch correlates. (B) The red/blue/
black bars from A showing a significant correlation for easier comparison.

Figure 4. Power and MUA correlation during the delay period. Ranked correlation across sites between change (using the last 500 msec of fixation
and the first 700 msec of working memory delay) in spiking activity (MUA) and change in power. Orange bars show significant correlations at p < .05,
Bonferroni corrected for multiple comparisons.
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comparisons, using nonpaired t test). Gamma power
during sample presentation was highest in V4 (which, sim-
ilar to the suppression in alpha/beta, showed a sharper
transient to sample presentation), second highest in LIP,
and lowest in pFC (Figure 5B). During the memory delay,
gamma power level was similar across all areas early in the
memory delay (Figure 5C), but pFC and LIP showed a
ramping up of gamma power toward the end of the mem-
ory delay (Figure 5C), whereas V4 showed a ramping down
of gamma power. At the same time, alpha/beta power
ramped up in V4 and ramped down in LIP and pFC
(Figure 5A). Spiking activity showed similar dynamics and
differences across areas as gamma power (Figure 5D).

Gamma Bursts Were Briefer in Higher
Cortical Areas

An analysis of single-trial data (rather than trial-averaged
data) showed that increases in gamma and alpha/beta
power occurred in brief bursts. Figure S3 shows example
electrodes from each area, demonstrating that the peak
frequency differences in alpha/beta were driven by brief
high-power events around those peaks. To quantify this,

we estimated, on each trial, the duration of the bursts
and the central frequency at which they occurred. We did
so by first setting a threshold at 2 SDs above the mean
power for each frequency. Around the events where power
exceeded the threshold for at least one oscillatory cycle, we
fitted 2-D Gaussians to estimate their frequency and time
(Lundqvist et al., 2016; see Methods).

This revealed alpha/beta and gamma occurred in brief
and narrow-band bursts in all areas (Figure 6; Figure S3;
see Methods). Figure 6A shows the duration of the bursts
of the stimulus-evoked gamma (i.e., bursts with their
central frequency within ±10 Hz of the peak of stimulus-
induced power; see Methods and Figure 2). The burst du-
rations were significantly shorter in pFC (mean = 37msec,
n = 28,403) versus LIP (mean = 42 msec, n = 16,177), in
pFC versus V4 (mean = 47 msec, n = 89,911), and in LIP
versus V4 ( p < 10−15 for all comparisons, Wilcoxon rank
sum test for equalmedians). This was partly, but not entirely,
a consequence of the changes in gamma frequency peak
across cortical areas. The duration of the bursts inversely
scaled with their frequency (combining bursts from all
areas; r = −.52 for beta, p < 10−30; r = −.21 for gamma,
p < 10−30 ). However, selecting bursts from the same

Figure 5. Activity profiles over time. The amplitudes of beta (10–27 Hz; A), gamma (45–120 Hz; B, C), and MUA (D) over time, normalized by
baseline (0–500 msec before stimulus [Stim] onset; V4 [red, n = 948], LIP [blue, n = 528], and pFC [black, n = 1560]), are shown. Only recordings
from sessions in which the delay was held fixed at 1.2 sec are used to average signals with similar a time evolution and to display the anticipatory
ramp-up. Shaded areas show SEM.
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frequency range across areas (60–80 Hz) resulted in aver-
age gamma burst durations that were more similar but still
significantly different across areas (Figure S4; Wilcoxon
ranked sum test, p< 10−9). Note, for example, that bursts
with a central frequency of 26 Hz, which was at the transi-
tion to gamma band in V4, had a longer duration (mean =
92 msec) than those at around the peak. Beta bursts, by
contrast, although their peak frequencies increased along
the cortical hierarchy, did not have a corresponding
change in duration. Instead, they had a longer duration
in LIP, next longest in V4, and shortest in pFC (Figure 6;
LIP [mean = 240 msec] vs. V4 [mean = 220 msec], LIP
vs. pFC [mean = 160 msec], and V4 vs. pFC, all signifi-
cantly different medians using Wilcoxon rank sum test with
p < 10−15).

In the alpha/beta band, there was a clear baseline peak
in all areas (Figure 1). Comparisons of all bursts across a
wide range (6–35 Hz, using a fixation period) suggested
that the differences in average peak power between areas
could be explained by differences in central frequency of
bursts ( p < 10−30 for all comparisons, Wilcoxon rank
sum test for equal median central burst frequency;
Figure S3). Potentially, differences in peak power could
be because of distinct, nonsinusoidal wave shapes across
compared areas. The power estimate of nonsinusoidal
wave shapes contributes power also at higher frequen-
cies than that of the principal period of the wave shape.
If this occurred more so in, for instance, pFC, it would shift
the estimated peak toward higher frequencies despite

having the same underlying frequency of oscillation. To
rule this out, we used the bottom (rather than central)
frequency of each burst. This confirmed the gradually higher
alpha/beta frequency up the hierarchy ( p < 10−30 for all
pairwise comparisons, Wilcoxon rank sum test for equal
medians).

DISCUSSION

We observed a general motif as well as a trend across the
cortical hierarchy. High-frequency (gamma band) power
correlated positively with spiking, as did slower frequency
(theta band) power. By contrast, alpha/beta band power
correlated negatively with spiking. The peak frequency of
all of these frequency bands became systematically higher
as the cortical hierarchy was ascended from visual cortex
to parietal cortex to pFC. Note that, because the peak
frequencies of all frequency bands gradually increased
up the cortical hierarchy, there was some overlap be-
tween “excitatory” (positive correlation with spiking)
and “inhibitory” (negative correlation with spiking) fre-
quencies across areas. For example, the excitatory theta
in pFC overlapped with the inhibitory alpha/beta in V4.
The fast excitatory rhythm (gamma) of V4 overlapped
with the inhibitory rhythm (alpha/beta) of pFC. This sug-
gests that the origin of the rhythms should be taken into
account when determining the functional relevance of
different frequency bands. The power increases occurred
in bursts. The duration of the gamma bursts was shorter
in higher areas. Finally, in the higher areas (pFC, LIP),
there was a ramping up of gamma bursting (and associ-
ated spiking) toward the end of the memory delay (V4
instead ramped down). The ramping up has been linked
to the readout of information from working memory
(Lundqvist et al., 2016, 2018; Hussar & Pasternak, 2010).
The shorter duration of the gamma bursts higher in the

hierarchy was partly because of the increase in gamma
frequencies, but it may also be a consequence of in-
creases of frequencies in the alpha/beta band. In the pos-
terior cortex, gamma bursts are strongly coupled to the
ongoing phase of alpha (Spaak, Bonnefond, Maier,
Leopold, & Jensen, 2012; Voytek et al., 2010; Osipova,
Hermes, & Jensen, 2008). In the frontal cortex, there is
phase–amplitude coupling between beta and gamma
(Bastos et al., 2018). This difference can be explained
by the increases in alpha/beta frequencies from the pos-
terior to anterior cortex. Gamma will naturally entrain to
whatever frequency is most prominent in a given area.
The higher frequency alpha/beta peak frequency in pFC
may therefore partly explain the shorter gamma burst
durations in pFC. The length of the average “duty cycle”
(the depolarized or active phase of an oscillation) of a
beta frequency is shorter than the average duty cycle
length of an alpha oscillation (Figure 7).
Alpha/beta and gamma rhythms are common and an-

ticorrelated across the cortex, but it has been unclear
whether or not they have similar functional relationships

Figure 6. Burst durations per area. Plots show the log-normal fits to the
distribution of burst durations for gamma (A) and beta (B), for V4 (red),
LIP (blue), and pFC (black). Curves are normalized with respect to
maximal count.
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in different areas. Frontal beta rhythms have been associ-
ated with top–down attention, inhibiting motor actions,
and working memory storage (Schmidt et al., 2019;
Lundqvist et al., 2016, 2018; Buschman & Miller, 2007).
Occipital and parietal alpha has been linked to inhibition
of unattended stimuli (Bollimunta et al., 2011; Rohenkohl
& Nobre, 2011; van Ede et al., 2011; Jokisch & Jensen, 2007;
Worden, Foxe, Wang, & Simpson, 2000; Klimesch et al.,
1998). Gamma power increases (and alpha/beta power de-
creases) in the sensory cortex during sensory input and
before/during movements in the motor cortex (Schmidt
et al., 2019; Fisch et al., 2009; Cheyne et al., 2008; Brovelli
et al., 2004; Fries et al., 2001; Gevins et al., 1997; Gray et al.,
1990). Frontal beta and premotor alpha are correlated with
reduced spike rates (Lundqvist et al., 2016, 2018; Haegens,
Nácher, Luna, Romo, & Jensen, 2011). Our results suggest
that these alpha-to-beta frequency differences are part of a
continuum across the cortical hierarchywith similar general

functions. Indeed, regardless of the exact frequencies of al-
pha, beta, or gamma, we found similar functional relation-
ships at each cortical level. Alpha/beta and gamma were
negatively and positively correlated with spiking, respec-
tively, and negatively correlated with each other. Both
alpha/beta and gamma were similarly modulated by stimu-
lus processing and the WM task across the entire hierarchy.
On a finer scale, we also observed differences with more
alpha/beta during WM retention in the sensory areas, con-
sistent with the proposed inhibitory function andmore sus-
tained delay activity in higher-order cortex. Thetawas not as
widely observed across the cortex, but in LIP and pFC, like
gamma, it was positively correlated with spiking. In V4, a
peak in the theta range positively correlated with spiking
during the memory delay.

Modeling suggests that increased peak frequency of os-
cillatory rhythms in higher cortical areas can arise naturally
because of inputs from earlier areas contributing to

Figure 7. A consequences of increases in alpha/beta frequencies up the cortical hierarchy. Dotted lines denote spike thresholds, above which there
is spiking and bursts of gamma oscillations. This active “duty” cycle becomes shorter if the underlying frequency is increased, resulting in shorter
windows of activity. In the plot, the higher area and sensory area are maximally phase shifted. The blue arrows represent a sensory input. If both
sensory and higher areas are sampling at the same frequency (A), a sensory signal will be missed if the areas are out of phase. If the higher area is
sampling at a higher frequency (B), the duty cycles will always partly overlap, thus fostering a higher area’s ability to sample sensory inputs. Thus,
although alpha/beta can have an overall suppressive effect on gamma/spiking by introducing windows of inhibition, the increase in alpha/beta
frequencies in higher areas can help feed forward what spiking there is.
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increased excitation in the higher-order areas (Lundqvist
et al., 2013; Brunel & Wang, 2003). Increases in excitation
up the cortical hierarchy have also been inferred from
large-scale connectivity data (Chaudhuri, Knoblauch,
Gariel, Kennedy, & Wang, 2015). At the same time, the au-
tocorrelation of spiking suggests a slower time constant for
spiking higher than the sensory cortex (Murray et al.,
2014). This is not incompatible with our observations of
higher, not slower, oscillatory dynamics in higher-order
cortex. Rather, spiking versus oscillatory LFP rhythms could
reflect different mechanisms with different functions. The
slower dynamics for spiking can help higher-order cortex
integrate information from lower areas (Chaudhuri et al.,
2015). By contrast, the increased frequency in oscillatory
rhythms may help sculpt information flow in the cortex.
Below, we will elaborate on this.

Although there may be a shared inhibitory control func-
tion for alpha/beta rhythms across the cortex, increases in
oscillatory frequencies can still be functionally relevant
(Wutz, Melcher, & Samaha, 2018; Bosman et al., 2012).
Spiking favoring specific oscillatory phases can group spik-
ing into “packets” of information (Buschman & Miller,
2010; Schroeder & Lakatos, 2009). According to the
“inhibition-timing” hypothesis, alpha oscillations reflect
alternating periods of relative inhibition and excitability
(Haegens et al., 2011; Klimesch, Sauseng, & Hanslmayr,
2007). The frequency of the oscillation dictates the duty
cycle and thus the duration of nested gamma/spiking
activity during the excitatory phases of the alpha rhythm.
Different inputs arriving during the same duty cycle of a
cortical alpha rhythm tend to be integrated (VanRullen &
Koch, 2003). For example, the temporal resolution at
which humans can discriminate two flashes in close suc-
cession is finer in subjects with a higher occipital alpha
peak frequency (Wutz et al., 2018; Samaha & Postle,
2015). This is because the higher the occipital alpha
frequency, the more likely that the two flashes will arrive
at different duty cycles and therefore be perceptually seg-
regated. Furthermore, a recent magnetoencephalography
study showed that the alpha/beta rhythms are not fixed
but can flexibly change with changes in task demands
for perceptual segregation (Wutz et al., 2018). Alpha peak
frequency increased when two successive flashes needed
to be segregated and decreased when integration was
demanded. Such flexible control over the speed of
“alpha/beta clocks” might be achieved by adjusting top–
down drive from areas higher in the hierarchy. Increased
top–downdrivewould entrain the sensory alpha to a slightly
higher frequency.

In the context of a hierarchy of connected areas, it also
makes sense that the “alpha/beta clocks” increase in fre-
quency up the cortical hierarchy. It allows higher areas to
better segregate packets received from lower cortical areas
and reduces the risk that two packets will be merged into
one. Furthermore, whereas increases in alpha/beta power
can suppress gamma/spiking by introducing periods of in-
hibition (Haegens et al., 2011), the increases in alpha/beta

frequencies up the cortical hierarchy can help feed forward
whatever spiking there is. If the receivers higher in the cor-
tical hierarchy operate on a slightly higher time scale, it will
make itmore likely that the receiver will have some overlap
between its duty cycle and incoming packets sent during
the duty cycle of the sender, supporting the feedforward
flow of spiking (Figure 7).
At the same time, the increase in frequencies up the cor-

tical hierarchy may also bias the direction of rhythmic
entrainment in the cortex in the feedback direction. If
two oscillators with different harmonic frequencies are
connected, the higher oscillator will be more effective at
entraining the slightly slower oscillator than vice versa.
The increase in frequencies in higher areas would thus nat-
urally bias rhythmic entrainment in the feedback direction,
down the cortical hierarchy. When there are no sensory in-
puts, alpha/beta rhythms predominate in the cortex. They
have been associated with top–down control (Bastos et al.,
2015; van Kerkoerle et al., 2014; Buschman &Miller, 2007).
The frequency gradient we observed suggests that their
entrainment has a feedback directional bias consistent with
top–down control. Bottom–up inputs could overcome the
top–down bias during periods of strong sensory drive.
Because sensory stimuli drive gamma, it could explain the
entrainment of gamma rhythms predominantly in the feed-
forward direction. In summary, the increase of oscillatory
frequencies up the cortical hierarchy may provide another
mechanism by which cortical processing and flow can be
regulated.
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