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Abstract

Ketamine is an NMDA receptor antagonist commonly used to maintain general anesthesia.

At anesthetic doses, ketamine causes high power gamma (25-50 Hz) oscillations alternating

with slow-delta (0.1-4 Hz) oscillations. These dynamics are readily observed in local field

potentials (LFPs) of non-human primates (NHPs) and electroencephalogram (EEG) record-

ings from human subjects. However, a detailed statistical analysis of these dynamics has

not been reported. We characterize ketamine’s neural dynamics using a hidden Markov

model (HMM). The HMM observations are sequences of spectral power in seven canonical

frequency bands between 0 to 50 Hz, where power is averaged within each band and scaled

between 0 and 1. We model the observations as realizations of multivariate beta probability

distributions that depend on a discrete-valued latent state process whose state transitions

obey Markov dynamics. Using an expectation-maximization algorithm, we fit this beta-HMM

to LFP recordings from 2 NHPs, and separately, to EEG recordings from 9 human subjects

who received anesthetic doses of ketamine. Our beta-HMM framework provides a useful

tool for experimental data analysis. Together, the estimated beta-HMM parameters and

optimal state trajectory revealed an alternating pattern of states characterized primarily by

gamma and slow-delta activities. The mean duration of the gamma activity was 2.2s

([1.7,2.8]s) and 1.2s([0.9,1.5]s) for the two NHPs, and 2.5s([1.7,3.6]s) for the human sub-

jects. The mean duration of the slow-delta activity was 1.6s([1.2,2.0]s) and 1.0s([0.8,1.2]s)

for the two NHPs, and 1.8s([1.3,2.4]s) for the human subjects. Our characterizations of the

alternating gamma slow-delta activities revealed five sub-states that show regular sequen-

tial transitions. These quantitative insights can inform the development of rhythm-generating

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009280 August 18, 2021 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Garwood IC, Chakravarty S, Donoghue J,

Mahnke M, Kahali P, Chamadia S, et al. (2021) A

hidden Markov model reliably characterizes

ketamine-induced spectral dynamics in macaque

local field potentials and human

electroencephalograms. PLoS Comput Biol 17(8):

e1009280. https://doi.org/10.1371/journal.

pcbi.1009280

Editor: Daniele Marinazzo, Ghent University,

BELGIUM

Received: November 12, 2020

Accepted: July 15, 2021

Published: August 18, 2021

Copyright: © 2021 Garwood et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data for this

paper are publicly available at https://github.com/

igarwood/ketamineHMM.

Funding: This work was supported by National

Institutes of Health (NIH) Award P01-GM118629

(to ENB, EKM), NIH Award R01MH115592 (to

EKM), NIH Award 5T32EB019940-05 (to ICG),

National Science Foundation Graduate Research

Fellowship Program 1745302 (to ICG), funds from

https://orcid.org/0000-0002-7578-7480
https://orcid.org/0000-0002-8845-5098
https://orcid.org/0000-0003-3959-4793
https://orcid.org/0000-0002-7055-8048
https://orcid.org/0000-0002-6740-1250
https://orcid.org/0000-0002-0582-6958
https://orcid.org/0000-0003-2668-7819
https://doi.org/10.1371/journal.pcbi.1009280
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009280&domain=pdf&date_stamp=2021-08-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009280&domain=pdf&date_stamp=2021-08-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009280&domain=pdf&date_stamp=2021-08-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009280&domain=pdf&date_stamp=2021-08-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009280&domain=pdf&date_stamp=2021-08-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009280&domain=pdf&date_stamp=2021-08-18
https://doi.org/10.1371/journal.pcbi.1009280
https://doi.org/10.1371/journal.pcbi.1009280
http://creativecommons.org/licenses/by/4.0/
https://github.com/igarwood/ketamineHMM
https://github.com/igarwood/ketamineHMM


neuronal circuit models that give mechanistic insights into this phenomenon and how keta-

mine produces altered states of arousal.

1 Author summary

Monitoring brain activity during anesthesia can provide insights into the underlying

mechanisms of how anesthetics elicit altered states of consciousness. Ketamine, a com-

monly used anesthetic, is known to cause short duration bursts of high frequency

electrophysiological activity in the brain, but the neural mechanisms underlying this activ-

ity are not well understood. A key limitation in developing accurate models of the under-

lying mechanism is a lack of detailed knowledge of the dynamic structure and spectral

properties of ketamine-induced oscillations. In this work, we address this limitation by

developing a statistical framework to quantify ketamine-induced neural activity. Our

framework is based on a hidden Markov model, which assumes that the neural activity

switches among discrete states, each of which has its own distinctive probabilistic spectral

representation. By estimating this versatile statistical model from electrophysiology data,

we generated detailed descriptions of the dynamic properties and oscillatory signatures

associated with ketamine-induced neurophysiological states in non-human primates and

in human patients. Furthermore, we identified additional ketamine-induced states that

have not yet been reported. In summary, our detailed quantitative descriptions of keta-

mine-induced spectra can aid further developments of neurophysiological mechanistic

models of ketamine as well as biomarker discovery for clinical anesthesia monitoring.

2 Introduction

Ketamine is a phenylcyclidine derivative and one of the most commonly used anesthetics in

clinical use world-wide [1–4]. It is classified as a WHO Essential Medicine [5], and is often the

only anesthetic available in clinics of developing countries [4]. At low doses, ketamine is

known to create a state of “dissociative anesthesia” characterized by altered sensory perception

and analgesia [1, 2]. At high doses it also leads to loss of consciousness, and therefore it is often

used as an anesthetic agent during surgery in humans and animals [3, 6–8]. Under anesthetic

dosages, ketamine produces distinct oscillatory signatures in the electroencephalogram (EEG)

of healthy volunteers and patients [9–11]. In a recent retrospective study by Akeju et al. [10],

the authors found that the frontal EEG from patients who received ketamine for the induction

of general anesthesia showed distinct alternating periods of intermittent high power activity in

the 27–40 Hz and 0.1–4 Hz frequency bands. Spontaneous gamma oscillations (i.e. 25–50 Hz)

have also been demonstrated under high dose ketamine in mice [12], rats [13], cats [14], non-

human primates (NHPs) [15–17], and sheep [18]. Recent neuroscience research in NHPs

under high-dose ketamine revealed prominent gamma oscillations modulated by slow wave

(0.3 Hz) activity [17], similar to the alternating periods of activity in gamma and slow-delta

bands observed in humans [10]. Objective characterization of the intermittent band-limited

spectral dynamics induced by ketamine would be useful both for monitoring patients during

ketamine-induced unconsciousness in clinical settings, as well as for aiding computational and

experimental neuroscience research aimed at building a mechanistic understanding of the

phenomena. Therefore, the availability of an efficient analytic tool, which can objectively
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detect and characterize ketamine-induced transient neural dynamics, can catalyze both clinical

and neuroscience innovations.

Ketamine’s primary pharmacodynamic effect is N-Methyl-d-aspartate (NMDA) receptor

antagonism [19]. One putative mechanism of ketamine-induced cortical gamma oscillations is

that ketamine preferentially blocks NMDA receptors of fast spiking inhibitory gamma amino-

butyric acid (GABA) interneurons. The blocking of the NMDA receptors on the interneurons

results in reduced interneuron activity and a reduction of GABA release at the synapse

between interneurons and excitatory pyramidal neurons. The reduction of GABA causes dis-

inhibition of the pyramidal neurons, resulting in increased pyramidal neuron activity that

manifests as cortical gamma oscillations [20, 21]. This mechanism, however, does not explain

the presence of periodic high-power gamma activity alternating with slow-delta activity. A

recent modeling study suggests a cyclic mechanism where in each cycle, the pyramidal neu-

rons that are disinhibited at the beginning of the cycle provide sufficient input to the interneu-

rons for the latter to overcome the ketamine inhibition and release GABA, which then results

in temporary inhibition of the pyramidal neurons towards the end of the cycle [22]. A statisti-

cal characterization of the ketamine-induced alternating gamma and slow-delta oscillation

activity in neural data can provide informative quantitative constraints for mechanistic neuro-

nal circuit models of ketamine-induced spectral dynamics. Such mechanistic models can fur-

ther aid the understanding of how ketamine causes altered states of arousal. Examples of how

detailed statistical analyses of neural data has guided neurophysiological modeling studies can

be found in existing works that studied propofol-induced unconsciousness [23–26].

State-space models provide a versatile statistical framework for analyzing the dynamics of

complex neural time-series data [27]. These models have been widely used in neuroscience,

from decoding hippocampal place cells [28], to tracking movement intention in the motor cor-

tex [29–31], to assessing the level of unconsciousness in medically-induced coma [32]. A par-

ticular class of state-space models, known as Hidden Markov Models (HMMs), have been

used to describe underlying dynamical processes driven by stochastic switching between dis-

crete states, where each state is associated with a distinct observation probability distribution

[33–38]. HMMs have been used to objectively decode neurophysiological states, including

detecting seizure events [39], classifying sleep stages [40–43], decoding speech [44, 45], and

decoding movement intention [46, 47]. HMMs have also been used to provide detailed statisti-

cal descriptions of neural phenomena [48–50]. Since ketamine-induced cortical activity is

characterized by distinct switching patterns in oscillatory dynamics, an HMM is a plausible

statistical model for both estimating neurophysiological states and characterizing their statisti-

cal properties. Our preliminary analysis using an HMM to characterize ketamine-induced

spectral dynamics in human EEG and in local field potential (LFP) from NHPs yielded prom-

ising results [51]. Along similar lines, the recent work by Li and Mashour [11], using a particu-

lar class of HMMs [52] to characterize multichannel scalp EEG from healthy volunteers,

further supports the utility of HMMs to analyze ketamine spectra. By inferring an HMM from

neural activity spectra, we can quantitatively characterize the discontinuous spectral dynamics

in terms of the parameters of the best-fitting observation and state transition models, as well as

the state trajectory corresponding to the entire data sequence.

In this work, we develop an HMM-based analysis framework to characterize ketamine-

induced spectral dynamics recorded in neurophysiological data from 2 NHPs and 9 human

patients in the operating room (OR) (Fig 1). The observations that go into our HMM analysis

are sequences of spectral power in seven frequency bands between 0 and 50 Hz. Neural oscilla-

tions are commonly characterized according to canonical frequency bands. In this study, we

define these according to those defined by Purdon, et al. [53]: slow (0–1 Hz), delta (1–4 Hz),

theta (4–8 Hz), alpha (8–12 Hz), beta (12–25 Hz), low gamma (25–35 Hz), and gamma (35–50
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Fig 1. Schematic of the beta-HMM algorithm. Neural recordings from primate LFP (A) or human EEG (B) serve as

inputs to the algorithm. Electrical recordings (C) are converted to their time-frequency representation via multitaper

spectral analysis (D). The spectral observations are split into 7 frequency bands and scaled between 0 and 1 (E). These

observations are then fit to the beta-HMM (F) via the EM algorithm, and the state trajectory is estimated from the

Viterbi algorithm. Outputs of the algorithm are the beta observation distributions for each state (G), estimated state

trajectory (H), and a transition matrix (I) describing the state switching dynamics.

https://doi.org/10.1371/journal.pcbi.1009280.g001
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Hz). The power is averaged within each band and scaled between 0 and 1 to facilitate compari-

son among data sets that vary in signal amplitude but not in the spectral profiles they repre-

sent. To describe this multivariate observation sequence, we assume that the spectral dynamics

are governed by a discrete-valued latent state process, where each state corresponds to a dis-

tinct spectral profile. We model these spectral profiles as realizations of state-specific and fre-

quency-band specific beta distributions. From the estimated HMM, we are able to objectively

characterize the dynamic evolution of neurophysiological activity induced by ketamine. By

applying this tool to analyze neural data from both NHPs and humans, we obtain precise esti-

mates of time-scales associated with neurophysiological phenomena observed in both species

(e.g., alternating gamma slow-delta activities). Overall, our work provides methodological

innovation to analyze switching spectral signatures as well as neuroscience inferences that

result from applying this analytic tool to neural recordings from multiple NHPs and patients.

The paper is organized as follows. In the following section 3.2 we present our beta-HMM

formulation and useful statistics based on the estimated beta-HMM. In section 3.3 we describe

the electrophysiology datasets to which we apply our analysis framework. We present the

results from our beta-HMM analyses in section 4. Finally, in section 5 we summarize the core

contribution of our work, highlight the connections between our work and that of others, and

suggest next steps.

3 Materials and methods

3.1 Ethics statement

All NHP procedures reported here followed the guidelines of the National Institutes of Health

and were approved by the Massachusetts Institute of Technology’s Committee on Animal

Care. The Partners Institutional Review Board (IRB) approved this human retrospective obser-

vational study. The IRB approved a waiver of consent for this study due to the anonymous

nature of EEG data.

3.2 A hidden Markov model for beta distributed observations

3.2.1 Reduced-order observations derived from multitaper spectrogram. We consider

a sequence of scalar-valued single-channel voltage activity representing either LFP or EEG

sampled at frequency Fs (in Hz). To quantify the spectral dynamics in the signal, we estimate

time-varying spectra across a sequence of overlapping time-windows, each of duration ΔMT =

1s, with 90% overlap between consecutive windows. The power spectral density (in dB) at the

n-th time-window and corresponding to frequency ωi (in Hz) is denoted by Sn(ωi) (see glos-

sary in Table A1 in S1 Appendix). We use the multitaper spectral estimation approach [54–56]

(time-halfbandwidth product = 2, and number of tapers = 3) to calculate the sequence {Sn(ωi)},

where n 2 [1, N], on a high dimensional set of distinct frequencies {ωi: 0< ωi< Fs/2}. We

reduce the complexity of our subsequent analyses by summarizing the high-dimensional infor-

mation Sn({ωi}) by a low-dimensional vector �SnðfohgÞ. This low-dimensional vector charac-

terizes the instantaneous average power in H (= 7) distinct frequency bands between 0–50 Hz.

We defined the frequency bands according to canonically described neural oscillation bands

[53]: slow (0–1 Hz), delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–25 Hz), low

gamma (25–35 Hz), and gamma (35–50 Hz) (see Sec A1 in S1 Appendix for additional detail).

These bands encompass the frequencies considered in previous studies of ketamine-induced

changes in EEG spectra in healthy human subjects and patients [10, 11] (see S9 Fig for an

exploration of alternative frequency band specifications). The sequence �SnðωÞ, where ω
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denotes the vector of frequency bands {ω1, . . ., ωH}, is the input to the beta-HMM analysis.

(We use bold math symbols to indicate vector-valued quantities).

3.2.2 Observation model. To facilitate the comparison of spectral observations across dif-

ferent data sets whose spectral power may vary in amplitude but represent comparable spectral

profiles, we scale �SnðωÞ to new vector yn 2 [0, 1]H whose h-th element is calculated as,

ynh ¼
1

1þ e� lhð�SnðohÞ� Q2ð
�SðohÞÞ

; for h 2 f1; � � � ;Hg ; ð1Þ

where Qjð
�SðohÞÞ denotes the function that operates on a real-valued sequence

�SðohÞ ¼ f
�SnðohÞg, n 2 [1, N] to yield the j-th quartile. The set of scaled power observations is

denoted by Y = {yn}, n 2 [1, N]. The user-defined parameter λh controls the mutual separation

of points in the ynh-space relative to their corresponding map in the �SnðohÞ-space. We set this

value to be λh = 2log(3)/ ðQ3ð
�SðohÞÞ � Q1ð

�SðohÞÞÞ. The intuition behind the choice of param-

eters in the logistic function is that they result in scaling of the data such that the median is

scaled to 0.5 and the data between the 1st and 3rd quartiles is scaled approximately linearly

between [0.25, 0.75] (Sec A2 in S1 Appendix). Data below the 1st quartile and beyond the 3rd

quartile are scaled non-linearly, such that very small values are scaled to be close to zero and

very large values are scaled to be close to one. Compared to linear 0–1 scaling, the logistic scal-

ing method is less sensitive to outliers which, in linear scaling, can lead to low variance obser-

vations and thus reduce the likelihood of detecting distinct spectral profiles. With logistic

scaling, the data in �SðohÞ is scaled such that the standard deviations of the observations in

each frequency band (yh) are between [0.23, 0.31] for all data sets reported here.

In our model, we assume that for the n-th time-window, the observation yn is a manifesta-

tion of an underlying latent brain state, zn, at the same instant. We also assume that zn is a ran-

dom process that transitions among K possible discrete states, each with its own characteristic

observation probability distribution whose mean corresponds to a distinct spectral profile. We

represent a state-specific and frequency band-specific probability density function (pdf) of the

observations as a standard beta distribution:

pðynhjzn ¼ k; ahk; bhkÞ ¼
yahk� 1

nh ð1 � ynhÞ
bhk � 1

Bðahk; bhkÞ
: ð2Þ

Here, p(y) denotes the pdf of a continuous-valued random variable y. In Eq (2), ahk> 0 and

bhk> 0 are real-valued scalar parameters of the beta distribution that correspond to the scaled

power in the h-th (h 2 [1, H]) frequency band when the state k 2 [1, K] is active. The normali-

zation term Bðahk; bhkÞ denotes the beta function [57].

Our assumption of statistical independence across the H distinct frequency bands condi-

tioned on an underlying state, as implied in Eq (2), leads to the conditional joint pdf (jpdf) on

yn,

pðynjzn ¼ k;�kÞ ¼
YH

h¼1

pðynhjzn ¼ k; ahk; bhkÞ : ð3Þ

where ϕk� {ahk, bhk} corresponds to the set of 2H beta distribution parameters associated with

state k. The set of beta parameters across all K states is denoted as ϕ� {ϕk} (Sec A3 in S1

Appendix). While the beta distribution can be multimodal when both ahk and bhk� 1, we

require that each state-specific pdf is unimodal. A multimodal pdf associated with a latent state

would indicate that the same state is associated with two different spectral profiles, which will

confound our intended interpretation of the states. Therefore, to ensure the unimodality in the
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marginal pdf’s we restrict the domain of the beta distribution parameters to avoid scenarios

when both ahk� 1 and bhk� 1 for a given h and k. In summary, we chose to work with the

beta distribution because it is a continuous probability distribution defined on the interval

[0, 1]. Furthermore, it is part of the exponential family which leads to efficient maximum likeli-

hood estimation (Sec A3 in S1 Appendix). The beta distribution is highly flexible as it allows

for unimodal distributions where the modes can lie anywhere in [0, 1].

3.2.3 State transition model. We assume the transition dynamics of the discrete-valued

latent state process, zn, to be governed by first-order Markov transitions characterized by a

constant K × K transition probability matrix, A = {Ajk}, such that

Prðzn ¼ kjzn� 1 ¼ jÞ ¼ Ajk ; where
XK

k¼1

Ajk ¼ 1 : ð4Þ

Here, Pr(z) denotes the probability mass function of a discrete-valued random variable z.

The initial state probability at the first time-window is characterized by a vector π = {πk} such

that

Prðz1 ¼ kÞ ¼ pk ; where
XK

k¼1

pk ¼ 1 : ð5Þ

Together, the observation model (Eq (3)), state transition matrix (Eq (4)), and initial state

probabilities (Eq (5)) define our state-space model, which we refer to as the beta-HMM.

3.2.4 Statistical analysis using beta-HMM parameters. The model parameters of the

beta-HMM can be estimated from one or more independent EEG/LFP recording sessions (Sec

A3 in S1 Appendix). The estimated beta-HMM provides reduced-order summaries of the

scaled spectral dynamics. Between any two states, we can compare the spectral power in a

given frequency band, as well as duration statistics derived from the transition matrix.

Summarizing scaled spectral power in a given frequency band. The set of beta distribu-

tions provides rich information about the scaled spectral observations from which the parame-

ters are estimated. One helpful statistic to summarize each beta distribution is Pr(Yh> 0.5|Z =

k) where (Yh|Z = k)*Beta(ahk, bhk). The notation (Yh|Z = k)*Beta(ahk, bhk) denotes a random

variable (Yh|Z = k) that is distributed according to the beta distribution Beta(ahk, bhk). A reali-

zation of (Yh|Z = k) would represent a scaled power observation in the h-th frequency band for

a known latent state Z = k. Pr(Yh> 0.5|Z = k) describes the probability that an observation

from the h-th frequency band and k-th state is greater than the median scaled power in the h-

th frequency band.

Comparing scaled spectral power in a given frequency band between any two beta-

HMM states. One way to quantify how different any pair of beta distributions are from one

another is to calculate the Kolmogorov-Smirnoff (KS)-distance from a large number of sam-

ples generated from the two distributions (we use 100,000 samples here). The KS-distance

measures the maximum difference between two empirical CDFs, so values close to zero indi-

cate that the underlying distributions are similar, and larger values indicate that the underlying

distributions are dissimilar. Alternatively, we can leverage the analytic tractability of the beta

distributions to analyze a difference random variable, Δhjk = Xhj − Xhk, where Xhj* Beta(ahj,
bhj) and Xhk* Beta(ahk, bhk). (In this section, we substitute (Yh|Z = k) with Xhk to simplify the

subsequent notation.) Here, the parameter sets {ahj, bhj} and {ahk, bhk} respectively correspond

to a state j and another state k in the h-th frequency band. We use Pr(Δhjk� 0) to denote the
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cumulative distribution function (cdf) value at 0 for Δhjk 2 [−1, 1] such that

PrðDhjk � 0; ahj; bhj; ahk; bhkÞ ¼
Z 0

� 1

pðd; ahj; bhj; ahk; bhkÞdd ð6Þ

where the pdf of the random variable Δhjk can be expressed at a given realization δ as,

pðd; ahj; bhj; ahk; bhkÞ ¼

R 1þd

0
pðxhj; dÞdxhj � 1 < d � 0

R 1

d
pðxhj; dÞdxhj 0 < d < 1

8
<

:
ð7Þ

where the joint pdf p(xhj, δ) is defined as,

pðxhj; dÞ ¼
xahj � 1

hj ð1 � xhjÞ
bhj � 1

Bðahj; bhjÞ
�
ðxhj � dÞ

ahk � 1
ð1 � xhj þ dÞ

bhk� 1

Bðahk; bhkÞ
: ð8Þ

A general approach to calculating probability distributions of difference random variables

can be found in the work by Cook and Nadarajah [58]. In this case, if Pr(Δhjk� 0) = α, then

there is probability of α that Xhj� Xhk, or equivalently a probability of 1 − α that Xhj> Xhk. In

the ensuing discussion we adopt the following notational convention for clarity: For a within-

subject pairwise comparison of HMM states estimated for a single NHP (Sec 4.3), we add a

superscript indicating the NHP (e.g. D
MJ
hjk ¼ XMJ

hj � XMJ
hk , for NHP MJ). When we compare states

between two NHPs, we add superscripts indicating both NHPs (e.g. D
MJ;LM
hjk ¼ XMJ

hj � XLM
hk ,

when comparing an HMM state from NHP MJ to one from NHP LM). When we perform

pairwise comparison of HMM states estimated from the human OR dataset (Sec 4.4), we add

the superscript H, D
H
hjk.

Comparing duration statistics between (i) any two beta-HMM states, and (ii) any two

neurophysiological states each characterized by one or more beta-HMM states. We present

several statistics to describe the dynamics of the model. If dk indicates a positive integer-valued

random variable of the duration spent in state k after transitioning into it and before transi-

tioning out to a different state, then the mean duration in that HMM state is given by

d̂k ¼
X1

d¼1

dkPrðdkÞ ¼
1

1 � Akk
ð9Þ

where PrðdkÞ � Prðzn:nþdk
¼ kjzn ¼ k; zn� 1 6¼ kÞ ¼ ð1 � AkkÞA

dk � 1

kk , which holds for any n> 1

[35].

In cases where a subset of beta-HMM states, k� � {1, � � �, K} corresponds to a neurophysio-

logical phenomenon of interest (e.g. multiple HMM states corresponding to sub-states of

gamma activity, or, multiple HMM states corresponding to the period between two consecu-

tive gamma activities), we use the following Monte Carlo approach to estimate the consecutive

time spent in this subset of beta-HMM states. Using the estimated transition matrix Â and ran-

domly sampled state z1, we generate a Markov sequence, z1:N (N = 2000 in our study). For all

zn’s taking values in k�, the corresponding state label is reassigned as zn = 1. The states that do

not take values in k� are reassigned values as zn = 0. We then calculate the mean duration spent

in the neurophysiological state, d̂k� , as the mean number of consecutive time points where zn =

1 holds. Similarly, for the same neurophysiological state k? we also calculate a mean interval
statistic as the average number of consecutive timepoints where zn = 0; this is an estimate of

the time interval between the two consecutive occurrences of k?. By repeating this procedure

NMC times (= 4000 in our study) we calculate median and 95% confidence intervals of the
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state-specific mean duration and mean interval statistics, together referred to as the duration

statistics in the ensuing discussion.

3.3 Experimental recordings

3.3.1 NHP LFP recordings under ketamine anesthesia. LFPs were recorded in multiple

separate recording sessions from two rhesus macaques (Macaca mulatta) aged 14 years (NHP

MJ, male, 13.0 kg) and 8 years (NHP LM, female, 6.6 kg). LFP recordings from 4 sessions in

NHP MJ and 5 sessions in NHP LM were analyzed in this study. During each recording ses-

sion, ketamine was administered as a single 20 mg/kg bolus intramuscular dose. This is a puta-

tive high dose for sedation and low dose for surgical anesthesia in NHPs [59–61]. Fifteen

minutes prior to ketamine administration, glycopyrrolate (0.01 mg/kg) was delivered to reduce

salivation and airway secretions. In both NHPs, LFPs were recorded from a 8 × 8 iridium-

oxide contact microelectrode array (“Utah array”, MultiPort: 1.0 mm shank length, 400 μm

spacing, Blackrock Microsystems, Salt Lake City, UT) implanted in the frontal cortex (vlPFC).

LFPs, recorded at 30 kHz, were low-pass filtered to 250 Hz and then downsampled to 1 kHz.

LFPs were continuously recorded from 1–5 minutes prior to ketamine injection up to 18–20

minutes following ketamine injection. In the ensuing figures representing neural timeseries

data, the time 0 denotes the time-point when the ketamine bolus was administered.

3.3.2 Human EEG recordings under ketamine anesthesia. The data analyzed in this

manuscript were acquired during an EEG study of ketamine-induced general anesthesia. We

reviewed and selected 9 patients (Age: 51.8±11.7 years, Weight: 84.5±15.5 kg, mean ± standard

deviation) from our database who were administered an intravenous bolus dose of ketamine

as the sole hypnotic drug for the induction of general anesthesia. The ASA scores in all these 9

patients were less than or equal to 3, and none of the patients had a history of any neurological

or psychiatric disorders. Prior to the ketamine bolus, patients were administered midazolam

(n = 8; 1.81 ± 0.53 mg) and/or fentanyl (n = 7; 164.29 ± 80.18 mcg) for anxiolysis and to block

the sympathetic response to laryngoscopy, respectively. To induce general anesthesia (GA) a

bolus dose of ketamine (mean ± standard deviation; 182.22 ± 29.06 mg, 10 mg/ml) was admin-

istered, and intubation was carried out using succinylcholine, cisatracurium, or rocuronium

for muscle relaxation. EEG data were acquired using Sedline monitor (Masimo Inc, USA). The

standard Sedline Sedtrace electrode arrays were placed on the forehead that approximated the

positions of Fp1, Fp2, F7, and F8, the ground electrode at Fpz, and the reference electrode 1

cm above Fpz. For our analysis, we use the data recorded from Fp2. Data were recorded with a

pre-amplifier bandwidth of 0.5 to 92 Hz, a sampling rate of 250 Hz, with 16-bit, 29 nV resolu-

tion. Electrode impedance was less than 5 kO in each channel. We analyzed continuous EEG

recordings starting from 2 minutes pre-ketamine bolus and up to 5.5 min—14 min post-keta-

mine bolus, and prior to the administration of any additional hypnotic drugs used to maintain

GA.

4 Results

4.1 Testing the beta-HMM analysis framework against simulated ground

truth

We first validated the ability of our beta-HMM analysis framework to accurately retrieve a

known Markov sequence and associated observation distributions by simulating spectrograms

generated from pre-specifed Markov processes (see Table A2 in S1 Appendix for the simula-

tion algorithm). We simulated spectral dynamics comparable to those caused by ketamine by

using a spectrogram S({ωi}) calculated from one session of NHP experimental data (as
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described in Sec 3.2.1) as input to the algorithm. Additional inputs to this algorithm are user-

prescribed HMM parameters, the number of states K, π and A, as well as the duration M of the

simulated data. This algorithm outputs a realization of the latent state path, z = {zm}, m 2 [1,

M], corresponding simulated spectrogram, Ssim({ωi}), and Y. Salient features of the algorithm

in Table A2 (S1 Appendix) are as follows. First, K distinct spectral clusters are created from the

given NHP LFP spectrogram using an unsupervised clustering algorithm (different from beta-

HMM) that does not respect the dependence across consecutive time-points. Then a Markov

sequence is simulated using the known parameters, π and A. Finally, to generate the spectro-

gram with K underlying latent states with Markov state transitions, a spectrum is selected for a

given instant by uniformly sampling from one of the K spectral clusters that corresponds to

the realization of the latent state at the same instant. As described in Sec 3.2, Y is calculated

from Ssim({ωi}) and used to estimate a K-state beta-HMM (Sec A3 in S1 Appendix).

For a given K, we generate 100 realizations of Y based on K spectral clusters. For each reali-

zation of Y, we estimate a K-state beta HMM to determine a set of estimated model parameters

Ŷ ¼ fπ̂ ; Â; ϕ̂g, and the estimated state path z� (calculated using the Viterbi algorithm). We

assess goodness of fit for each realization of Y by comparing the estimated state path, z�, and

model parameters, Ŷ, to the ground truth state path, z, and model parameters, Θ, respectively.

To assess the accuracy of the estimated path z� compared to the known path z, we calculated

the fraction of time points for which the estimated and known path are identical:

Path Accuracy ¼

PN
n¼1

Iðzn; z�nÞ
N

; where Iðzn; z
�

nÞ ¼

(
0 zn 6¼ z�n

1 zn ¼ z�n
ð10Þ

To assess the accuracy of the observation distribution estimation, we calculated the mean

KS-distance between the HK ground truth and estimated beta distributions. KS-distances close

to zero indicate that the estimated and ground truth distributions are similar; the maximum

possible KS-distance is 1. We also calculated the absolute errors in the estimated initial state

and state transition probabilities, denoted respectively by �A and �π,

�A ¼

PK
j¼1

PK
k¼1
jAjk � Âjkj

2K
ð11Þ

�p ¼

PK
k¼1
jpk � p̂kj

2
ð12Þ

Note the the maximum possible value for
PK

j¼1

PK
k¼1
jAjk � Âjkj ¼ 2K and for

PK
k¼1
jpk � p̂kj ¼ 2. Thus, the denominators scale the absolute errors to the range of [0, 1]. We

report the median and 90% confidence intervals of each of these metrics calculated across 100

simulated spectrograms for each model order in Fig 2.

Simulation analysis revealed that the model parameters of simulated spectrograms, gener-

ated from ketamine-induced neural data and characterized by known Markov transition

dynamics, can be accurately estimated with the beta-HMM framework for low (K< 7) model

orders. The performance of the beta-HMM analysis framework on a typical simulated spectro-

gram (Fig 2A) demonstrates that the estimated state trajectory (Fig 2C) matches well with the

actual state trajectory (Fig 2B). Across 400 simulated datasets for models with 2 through 5

states (100 simulations each), the estimated state trajectory was estimated with high accuracy

(PathAccuracy> 0.98 for all of 400 independent simulations), the beta distributions were esti-

mated with high accuracy (mean KS-distance <8.78 × 10−3), and the transition matrix was

estimated with low relative error (�A< 0.01). For models with 2–5 states, the initial probability,
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which corresponds to a single data point, was also accurately estimated (�π< 3.09 × 10−4 for all

but three of the 400 independent simulations). Beyond 6 states, there was a significant drop-off

in estimation accuracy. A potential reason for this occurrence is redundancy across some of

the K> 6 spectral clusters derived from the original NHP spectrogram, which may not contain

more than 6 clusters of distinct neural activity. Overall, this numerical experiment generated

detailed insights on the level of inaccuracy in our beta-HMMs when estimated from spectral

data derived from real neural activity induced by ketamine. The simulations revealed that the

beta-HMM framework was able to estimate Markov state trajectories and model parameters

with high accuracy for models with 2–5 states.

4.2 Demonstration of the beta-HMM analysis on a single observation

sequence of NHP LFP data (L = 1 case)

Using the numerically tested beta-HMM analysis framework, we analyzed a single session

high-dose ketamine NHP LFP recording (Sec 3.3.1). From qualitative analysis of the time-

series data and spectral estimates (S1 Fig), we identified two prominent neural signatures

induced by ketamine: one is the gamma activity that has been previously described [10], and

one is prominent slow-delta activity that also varies in power on a similar time scale to the

gamma activity. The gamma and slow-delta activities tend to co-occur, resulting in four sub-

states characterized by high or low gamma activity and high or low 0–4 Hz activity. We also

sought to capture the transition from pre- to post- ketamine bolus neurophysiology, so we

Fig 2. The beta-HMM tracks the dynamic structure of simulated spectrograms characterized by discrete state transitions (extracted from one

sequence of ketamine-induced LFP in NHP MJ). (A) One realization of simulated spectrogram. (B) Markov path corresponding to the simulated

spectrogram in panel A. (C) Optimal state trajectory estimated from simulated data in panel A via the beta-HMM analysis. (D-G) Goodness of fit

analysis. Box-plots summarize the state path accuracy (Eq (10)) in panel D, the KS-distance between the estimated and the actual state-specific and

frequency band-specific beta distributions (averaged across all states and all frequency bands) in panel E, the relative error in transition matrix (Eq (11))

in panel F, and relative error in the initial state probabilities (Eq (12)) in panel G. For each specified number of states, 100 realizations of spectrograms

were simulated and the beta-HMM analysis was performed on each.

https://doi.org/10.1371/journal.pcbi.1009280.g002
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chose a model order of K = 5. We estimated a 5-state beta-HMM from a single sequence of

LFP spectrogram.

The 5-state beta-HMM provided a quantitative characterization of the neurophysiological

dynamics induced by ketamine (Fig 3A and 3B). The beta-HMM analysis objectively identified

alternating gamma slow-delta dynamics in NHPs similar to those described by Akeju, et al.

[10]. We found that the HMM identified alternating states which corresponded to periods of

prominent gamma oscillations and prominent slow-delta oscillations (Fig 3C and 3D). From

visual inspection of the the state-segmented spectrograms and further analysis of beta distribu-

tions (Fig 3E and 3G and S4 Fig), we identified relevant neurophysiological states with distinct

spectral signatures. For example, in the state-segmented spectrogram for state 5 (Fig 3E), we

can see that high spectral power in the 25–35 Hz frequency band (h = 6) is associated with a

high probability that (Y6|Z = 5)>0.5 (Fig 3G). (See Sec A6 in S1 Appendix for a tutorial-styled

explanation of how the estimated beta pdf’s are used to analyze the spectral properties of the

HMM states). Based on the beta distributions, we found that HMM states 4 and 5 both have

high gamma power (25–35 Hz (h = 6): Pr(Y6 > 0.5|Z = 4) = 0.84, Pr(Y6 > 0.5|Z = 5) = 0.99;

35–50 Hz (h = 7): Pr(Y7 > 0.5|Z = 4) = 0.89, Pr(Y7 > 0.5|Z = 5) = 0.98). HMM states 2 and 3

have prominent slow-delta power (0–1 Hz (h = 1): Pr(Y1 > 0.5|Z = 2) = 1.00, Pr(Y1 > 0.5|

Z = 3) = 0.97; 1–4 Hz (h = 2): Pr(Y2 > 0.5|Z = 2) = 1.00, Pr(Y2 > 0.5|Z = 3) = 0.96). Therefore,

we consider HMM states 4 and 5 together to represent the neurophysiological gamma activity,

and HMM states 2 and 3 to represent the slow-delta activity. In state 2, the low frequency

Fig 3. A 5-state beta-HMM estimates ketamine-induced neurophysiological dynamics from a single NHP LFP sequence. (A) Multitaper

spectrogram of LFP where time 0 marks the time-point of administration of 20 mg/kg ketamine intramuscular bolus. (B) Estimated latent state

trajectory. (C) Enlarged view of panel A for the epoch identified by the rectangular box. (D) Enlarged view of panel B for the epoch identified by the

rectangular box. (E) Spectral clusters identified by the 5-state beta-HMM. Each spectral cluster has a characteristic signature as indicated by the mean

spectrum and corresponding standard deviation. (F) The estimated transition matrix. The expected value of the duration spent in each state is indicated

on the diagonal. (G) Frequency-band specific beta distributions (over scaled power (Y) in respective bands) estimated for each of the 5 states. Each color

corresponds to a state, as denoted in panel B.

https://doi.org/10.1371/journal.pcbi.1009280.g003
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activity extends into the theta (4–8 Hz, h = 3) and alpha (8–12 Hz, h = 4) ranges (Pr(Y3 > 0.5|

Z = 2) = 1.00, Pr(Y4 > 0.5|Z = 2) = 0.93). The gamma and slow-delta activities tended to over-

lap (Fig 3C and 3D), resulting in moderate slow-delta power in state 5 (Pr(Y1 > 0.5|Z = 5) =

0.55, Pr(Y2 > 0.5|Z = 5) = 0.68).

The transition matrix (Fig 3F) quantifies the alternating dynamics illustrated in Fig 3C and

3D. From the transition matrix, we can also determine the expected duration of each state, as

denoted on the diagonal terms indicating self-transition probabilities (Eq 9). From the transi-

tion probabilities and optimal state trajectory, we infer there is a high probability of the state

sequence 2! 3! 4! 5! 2. This confirms the alternating dynamics between time-localized

high power activity in the gamma and low frequency bands induced by ketamine. The beta-

HMM provides further evidence that the neural activity induced by ketamine is distinct from

pre-ketamine neural activity. States 2, 4, and 5 do not occur prior to the ketamine bolus (Fig

3A and 3B). Furthermore, HMM state 1 has sustained prevalence prior to the bolus and does

not occur after a brief initial period (approximately 2 minutes) post-bolus. Therefore, HMM

state 1 can be associated with a pre-ketamine neurophysiological state. This is further sup-

ported by the fact that the transition probability from any of the post-bolus states back to state

1 is less than 0.01.

4.3 Subject-specific beta-HMMs estimated from multiple recording

sessions (L> 1 case) from 2 NHPs

A review of summary statistics from session-specific beta-HMMs estimated from multiple

recording sessions of each NHP indicated the presence of subject-specific HMM states that

have common features (both spectral and temporal) across sessions. This further suggested the

utility of a subject-specific HMM for each NHP. Therefore, we fitted two 5-state beta-HMMs

to multiple LFP recording sessions from 2 NHPs: 4 sessions for NHP MJ and 5 sessions for

NHP LM (Sec 3.3.1). A key implementation feature in our beta-HMM analysis from multiple

sessions (for a given group) is that we do not concatenate multiple sessions; rather we treat

them as mutually independent in our EM algorithm implementation (as discussed in Sec A3

in S1 Appendix). Thus, the beta-HMM analysis respects the sequential nature of the observa-

tions within a session, while maintaining the distinction across multiple sessions. Since there

were at least three days between each NHP session, we treated them as mutually independent

and therefore utilized the EM algorithm based on Eq. (A4) in S1 Appendix to estimate the

model parameters.

We present the optimal state trajectories and state-specific and frequency band-specific

observation distributions estimated from 4 of 9 total sessions of 2 NHPs in Fig 4 (see S2 Fig for

all sessions). Although the amplitude of the spectral power tended to vary across sessions, our

use of scaled power facilitated identification of common states with similar spectral profiles

across multiple sessions (Fig 4A–4C and 4E–4G). The beta distributions provide detailed

information about the spectral content of each HMM state, and we summarize the key results

here. In both NHPs, we found that the beta distributions in each frequency band were unique

across all states (KS-distance >0.04 for all pairwise comparisons; 140 comparisons = 10 pairs

of states per frequency band per NHP × 7 frequency bands × 2 NHPs) (Fig 4D and 4H, S5 and

S6 Figs). Consistent with the single session observations in NHP MJ, in both NHPs we found

that HMM states 4 and 5 have high power in the 35–50 Hz (h = 7) range (NHP MJ: Pr(Y7 >

0.5|Z = 4) = 0.84, Pr(Y7 > 0.5|Z = 5) = 0.99; NHP LM: Pr(Y7 > 0.5|Z = 4) = 0.83, Pr(Y7 > 0.5|

Z = 5) = 0.88). (See Sec A5 in S1 Appendix for a tutorial-styled explanation of how the esti-

mated beta pdf’s are used to analyze the spectral properties of the HMM states.) In HMM

states 4 and 5, we found that NHP LM had comparatively lower scaled power in the low
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gamma (25–35 Hz, h = 6) range (NHP MJ: Pr(Y6 > 0.5|Z = 4) = 0.75, Pr(Y6 > 0.5|Z = 5) =

0.99; NHP LM: Pr(Y6 > 0.5|Z = 4) = 0.44, Pr(Y6 > 0.5|Z = 5) = 0.53). In both NHPs, we found

states 2 and 3 to have prominent slow-delta power (NHP MJ: 0–1 Hz (h = 1): Pr(Y1 > 0.5|

Z = 2) = 0.98, Pr(Y1 > 0.5|Z = 3) = 0.97; 1–4 Hz (h = 2): Pr(Y2 > 0.5|Z = 2) = 1.00, Pr(Y1 > 0.5|

Z = 3) = 0.95; NHP LM: 0–1 Hz (h = 1): Pr(Y1 > 0.5|Z = 2) = 0.95, Pr(Y1 > 0.5|Z = 3) = 0.82;

1–4 Hz (h = 2): Pr(Y2 > 0.5|Z = 2) = 0.98, Pr(Y1 > 0.5|Z = 3) = 0.95). Thus, in both NHPs we

consider HMM states 4 and 5 together to represent the neurophysiological gamma activity,

and states 2 and 3 to represent the slow-delta activity. As observed in the single session analy-

sis, in NHP MJ state 2, the low frequency activity extends into the theta (4–8 Hz, h = 3) and

alpha (8–12 Hz, h = 4) ranges (Pr(Y3 > 0.5|Z = 2) = 1.00, Pr(Y4 > 0.5|Z = 2) = 0.95). A similar

result was observed in NHP LM state 3 (Pr(Y3 > 0.5|Z = 3) = 0.99, Pr(Y4 > 0.5|Z = 3) = 1.00).

As demonstrated in Fig 3C and 3D, the multisession beta-HMM model captures the alternat-

ing dynamics induced by ketamine in both NHPs (Fig 4C and 4G). As noted in the single ses-

sion analysis, there was some overlap between the gamma and slow-delta activity, resulting in

Fig 4. The 5-state beta-HMM can be fit across multiple sessions to create NHP-specific models. (A,B) Multitaper spectrograms of LFP and

corresponding estimated latent state trajectories from 2 of 4 sessions in NHP MJ. (C) Enlarged view of a typical 35s epoch indicated by the rectangular

portion in panel B. (D) Frequency band-specific beta pdfs for each of the 5 states estimated from the 4 sessions in NHP MJ (Y—scaled power). Each

color corresponds to a state, as denoted in the state trajectories in panels A-C. (E,F) Multitaper spectrograms of LFP and corresponding estimated latent

state trajectories from 2 of 5 sessions in NHP LM. (G) Enlarged view of a typical 35s epoch indicated by the rectangular portion in panel F. (H)

Frequency band-specific beta pdfs for each of the 5 states estimated from the 5 sessions in NHP LM (Y—scaled power). Each color corresponds to a

state, as denoted in the state trajectories in panels E-G.

https://doi.org/10.1371/journal.pcbi.1009280.g004
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moderate slow-delta power in state 5 (NHP MJ: Pr(Y1 > 0.5|Z = 5) = 0.46, Pr(Y2 > 0.5|Z = 5) =

0.62; NHP LM: Pr(Y1 > 0.5|Z = 5) = 0.48, Pr(Y1 > 0.5|Z = 5) = 0.55).

We used the subject-specific HMMs to further analyze the duration statistics and spectral

content across states, both within a subject as well as between the two subjects (Fig 5). We

found significant differences in the neurophysiological state dynamics between the two NHPs

(Fig 5A–5C). The mean duration of the gamma activity, d̂4;5 (i.e. consecutive time-windows

spent in states 4 or 5), was 2.2s([1.7, 2.8]s) in NHP MJ, and 1.2s([0.9, 1.5]s) in NHP LM. The

mean duration of the slow-delta activity, d̂2;3, was 1.6s([1.2, 2.0]s) in NHP MJ, and 1.0s([0.8,

1.2]s) in NHP LM. Since the states dominated by gamma or slow-delta activities in NHPs alter-

nate, the average interval between two consecutive periods of high gamma power is equal to

the average duration of the slow-delta oscillations, and vice versa. The durations of both

the gamma and slow-delta activities were longer in NHP MJ. From the transition matrices

Fig 5. The estimated beta pdfs and transition matrices characterize the underlying dynamics of NHP LFP data following a 20 mg/kg bolus of

ketamine. (A) Duration statistics corresponding to gamma and slow-delta activities in NHP MJ and NHP LM. For each subject, 4000 Markov

sequences of length N = 2000 were simulated using the subject-specific estimated transition matrix. The mean duration and interval corresponding to

the gamma and slow-delta activities were calculated for each realization of these sequences. Median and 95% confidence bounds across all the subject-

specific simulated sequences are indicated in orange (NHP MJ) or blue (NHP LM). The mean duration and interval calculated from the estimated state

trajectory (output of the Viterbi algorithm which uses the maximum likelihood beta-HMM parameters and the observations as input) are indicated by a

cross (×) symbol. (B,C) The transition matrices for NHP MJ and NHP LM with expected state duration (in seconds) indicated on the diagonal for the

states that occur following the ketamine bolus. (D-F) Heatmaps indicating the probability of the event that scaled power in state j (of NHP MJ in panels

D and F, and of NHP LM in panel E) is less than or equal to the scaled power in state k (of NHP MJ in panel D, and of NHP LM in panels E and F) for

each of the 7 frequency bands. Note that in panels D and E, the upper triangle (1< j< k< 5), omitted to avoid redundancy, is equal to 1 minus the

lower triangle (1< k< j< 5). The color indicates Pr(Δ� 0) which represents Pr(Xhj − Xhk� 0), where Xhj is a random variable characterized by state

j’s beta pdf in frequency band h and Xhk is a random variable characterized by state k’s beta pdf in the same frequency band h.

https://doi.org/10.1371/journal.pcbi.1009280.g005
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(Fig 5B and 5C), it is also apparent that the expected duration in each HMM state in NHP MJ

is greater than that of NHP LM, indicating faster state transition dynamics in the latter subject.

We used the ML estimated beta distributions to perform pairwise comparisons of the scaled

power between any two states from either NHP (Fig 5D and 5E). By investigating Pr(Δhjk� 0;

ahj, bhj, ahk, bhk) (per Sec 3.2.4), we were able to determine the probability that HMM state j
had lower scaled power than HMM state k in the h-th frequency band. For this section, we

simplify the notation by referring to Pr(Δhjk� 0;ahj, bhj, ahk, bhk) as Pr(Δhjk� 0), and summa-

rize the key findings. In both NHPs, we found that the scaled powers in the 0–1 Hz and 35–50

Hz bands during the pre-ketamine state (HMM state 1) were lower relative to every other state

(0:00 < PrðDMJ
hj;1 � 0Þ < 0:34 and 0:00 < PrðDLM

hj;1 � 0Þ < 0:16 for h 2 {1, 7} and j 2 [2, K]).

This provides further evidence that the oscillatory dynamics in these two frequency bands

were most significantly altered by ketamine. NHP MJ had lower scaled power in the 25–35

and 35–50 Hz ranges in states 2 and 3 compared to states 4 and 5 (0:01 < PrðDMJ
hjk � 0Þ < 0:24

for h 2 {6, 7}, j 2 {4, 5}, and k 2 {2, 3}). This is consistent with the observation that the gamma

activity (represented by states 4 and 5) in NHP MJ occurred broadly between 25–50 Hz. NHP

LM also had lower scaled power in the 35–50 Hz range in states 2 and 3 compared to states 4

and 5 (0:13 < PrðDLM
5;j;k � 0Þ < 0:25 for j 2 {4, 5}, and k 2 {2, 3}). However, state 4 and 5 in

NHP LM had similar 25–35 Hz scaled power to state 3 (0:45 < PrðDLM
6;j;3 � 0Þ < 0:52 for j 2

{4, 5}). This is consistent with the observation that the gamma activity (again represented by

states 4 and 5) occurred primarily between 35–50 Hz in NHP LM. In both NHPs, states 2

and 3 had higher scaled power in the 0–1 and 1–4 Hz ranges compared to states 4 and

5 (0:79 < PrðDMJ
hjk � 0Þ < 1:00 and 0:76 < PrðDLM

hjk � 0Þ < 0:97 for h 2 {1, 2}, j 2 {4, 5}, and

k 2 {2, 3}).

We further leveraged the subject-specific beta-HMMs to compare beta distributions

between any HMM state in NHP MJ and any HMM state in NHP LM (Sec 3.2.4, Fig 5F). In

the 35–50 Hz range, we found that HMM states 4 and 5 in NHP MJ were most similar to the

HMM states 4 and 5 in NHP LM (0:47 < PrðDMJ;LM
7;jk � 0Þ < 0:65 for j 2 {4, 5} and k 2 {4, 5}).

Likewise, in the 35–50 Hz range, we found states 2 and 3 in NHP MJ were most similar to

states 2 and 3 in NHP LM (0:53 < PrðDMJ;LM
7;jk � 0Þ < 0:64 for j 2 {2, 3} and k 2 {2, 3}). NHP

LM had more dramatic ketamine-induced increases in the slow-theta frequency ranges than

NHP MJ, resulting in lower relative power in state 1 in NHP LM compared to any state in

NHP MJ (0:00 < PrðDMJ;LM
h;j;1 � 0Þ < 0:07 for h 2 [1, 3] and j 2 [1, 5]).

4.4 Human-specific beta-HMM estimated using observations from multiple

patient subjects (L> 1 case)

We investigated if the beta-HMM analysis framework could be applied to infer the common

ketamine-induced neurophysiological state dynamics observed in the scalp EEG of multiple

OR patients (Sec 3.3.2). We fit a single beta-HMM to independently collected EEG data from

L = 9 human patients and generated a quantitative description of ketamine-induced neuro-

physiological dynamics for a typical patient (Fig 6). For this analysis, we chose a model order

of K = 6 states, which allowed for classification of broadband high power, typical of noise arti-

facts in the OR, as an additional HMM state.

As with NHPs, we found that the beta distributions in each frequency band were unique

across all states (KS-distance >0.04 for all pairwise comparisons; 105 comparisons = 15 pairs

of states per frequency band × 7 frequency bands) (Fig 6D and S7 Fig). While there were

differences in the ketamine-induced spectrograms between human patients (S3 Fig), the

PLOS COMPUTATIONAL BIOLOGY A hidden Markov model reliably characterizes ketamine-induced neural dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009280 August 18, 2021 16 / 28

https://doi.org/10.1371/journal.pcbi.1009280


state-specific spectral signatures characterized by the beta distributions were overall consistent

across all 9 patients (S8 Fig). We again found that HMM states 4 and 5 had high scaled power

in the low gamma (25–35 Hz, h = 6) frequency range (Pr(Y6 > 0.5|Z = 4) = 0.62, Pr(Y6 > 0.5|

Z = 5) = 0.93). In state 5, the high scaled power extended to the gamma (35–50 Hz, h = 7)

range (Pr(Y7 > 0.5|Z = 5) = 0.87). Thus, states 4 and 5 also represent the neurophysiological

gamma activity in human EEG. States 2 and 4 had dominant slow-delta power (0–1 Hz (h = 1):

Pr(Y1 > 0.5|Z = 2) = 0.71, Pr(Y1 > 0.5|Z = 4) = 0.93; 1–4 Hz (h = 2): Pr(Y2 > 0.5|Z = 2) = 0.77,

Pr(Y1 > 0.5|Z = 4) = 0.99), and thus characterize ketamine-induced slow-delta activity. In

State 4, the low frequency activity extended into the the theta (4–8 Hz, h = 3) and alpha (8–12

Hz, h = 4) ranges (Pr(Y3 > 0.5|Z = 4) = 0.94, Pr(Y4 > 0.5|Z = 4) = 0.88).

There were distinct neurophysiological differences between the human EEG and the NHP

LFP (Sec 4.3). First, the gamma activity in humans (captured by states 4 and 5) was lower in

frequency and extended into the beta (12–25 Hz, h = 5) frequency range (Pr(Y5 > 0.5|Z = 4) =

0.81, Pr(Y5 > 0.5|Z = 5) = 0.86). Second, in the human EEG, state 4 had both prominent

gamma and slow-delta activity, indicating that the gamma and slow-delta activities overlapped

rather than alternated. Third, there was high slow-delta power and, in some patients, high

gamma power (S3 Fig) throughout the human EEG recordings, which resulted in HMM states

that were present both before and after the ketamine bolus. Finally, soon after the time of the

ketamine bolus, in several patients (Fig 6B and S3 Fig), there was broadband high power that,

in the context of OR cases, is difficult to distinguish from noise. This activity is classified with

the 6-th state, which also corresponds to periods of obvious noise artifacts (e.g. at t = 0 min in

Fig 6A).

Quantitative analysis of the beta-HMM dynamics (Fig 7A) revealed that the mean duration

of the gamma activity, d̂4;5, was 2.5s([1.7, 3.6]s). The mean interval between consecutive occur-

rences of the gamma activity, d̂1;2;3, was 4.7s([3.1, 7.2]s). The mean duration of the slow-delta

activity d̂2;4 was 1.8s([1.3, 2.4]s). The mean interval between consecutive occurrences of slow-

delta activity, d̂1;3;5, was 3.2s([2.4, 4.5]s). Furthermore, the human EEG also tends to transition

cyclically through the HMM states induced by ketamine (Fig 7B)—the most probable

Fig 6. The 6-state beta-HMM can be fit across independent EEG recordings from multiple human subjects to create a typical human-specific

model. (A-B) Multitaper spectrograms of EEG and corresponding estimated latent state trajectories from 2 of the 9 human subjects. (C) Enlarged view

of a typical 120s epoch indicated by the rectangular portion in panel B. (D) Frequency band-specific beta pdfs for each of the 6 states estimated from the

9 EEG sessions (Y—scaled power). Each color corresponds to a state, as denoted in the state trajectories in panels A-C.

https://doi.org/10.1371/journal.pcbi.1009280.g006
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transition sequence, starting from state 1, is 1! 2! 3! 5! 4! 2. All states have a low

probability of transitioning to state 6 (Aj,6 < 0.012 for j 2 [1, 5]), further indicating that this

state captures spurious noise artifacts.

Further quantitative analysis (Fig 7C) of human EEG beta-HMM parameters revealed

higher scaled power in the 25–35 Hz range for HMM states 4 and 5 compared to states 1–3

(0:00 < PrðDH
6;j;k � 0Þ < 0:37 for j 2 {4, 5} and k 2 [1, 3]). For state 5, the increased power

extended into the 35–50 Hz range (0:01 < PrðDH
6;5;k � 0Þ < 0:24 for and k 2 [1, 3]). States 2

Fig 7. The estimated beta pdfs and transition matrix characterize the underlying dynamics of human scalp EEG

under ketamine-induced general anesthesia. (A) Duration statistics corresponding to gamma and slow-delta

activities. 4000 Markov sequences of length N = 2000 were simulated using the estimated transition matrix. The mean

duration and interval corresponding to the gamma and slow-delta activities were calculated for each realization of

these sequences. Median and 95% confidence bounds across all the simulated sequences are indicated in blue. The

mean duration and interval calculated from the estimated state trajectory (output of the Viterbi algorithm which uses

the maximum likelihood beta-HMM parameters and the observations as input) are indicated by a cross (×) symbol.

(B) The transition matrices for NHP MJ and NHP LM with expected state duration (in seconds) indicated on the

diagonal for all states. (C) Heatmaps indicating probability of the event that scaled power in state j is less than or equal

to the scaled power in state k for 1� k� j� 6 and for each of the 5 frequency bands. Note that the upper triangle (1<

j< k< 6), omitted to avoid redundancy, is equal to 1 minus the lower triangle (1< k< j< 5). The color indicates Pr
(Δ� 0) which represents Pr(Xhj − Xhk� 0), where Xhj is a random variable characterized by state j’s beta pdf in

frequency band h and Xhk is a random variable characterized by state k’s beta pdf in the same frequency band h.

https://doi.org/10.1371/journal.pcbi.1009280.g007
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and 4 had the highest power between 0–4 Hz (0:78 < PrðDH
hjk � 0Þ < 1:00 for h 2 {1, 2}, j 2

{2, 4}, and k 2 {1, 3, 5}). As previously noted, there was a strong slow oscillation throughout

the human recordings, so the ketamine-induced changes in the 0–1 Hz frequency range were

more subtle than in the NHPs. Finally, through this analysis, it is again clear that state 6 was

characterized by broadband high power (0:00 < PrðDH
h;6;k � 0Þ < 0:35 for h 2 [1, 7] and k 2

[1, 5]).

5 Discussion

Our beta-HMM analysis framework provided parsimonious summaries of ketamine-induced

slow-gamma alternating dynamics for NHP LFP and human EEG recordings following high-

dose ketamine administration. The input to the analysis framework was one or more

sequences of instantaneous power in multiple canonical frequency bands. The power values

were averaged across frequencies within each discrete band and scaled between 0 and 1. The

scaling enabled identification of latent HMM states each with a distinct probability distribu-

tion on power values lying between a very low (corresponding to a 0) and a very high value

(corresponding to a 1) in each of the chosen frequency bands, irrespective of the absolute

value of spectral estimates. A key assumption incorporated in the HMM is that at any instant

in time, the probability distribution from which the observation is sampled depends only on

the discrete value of an underlying latent state process at the same instant. This state process

itself is assumed to evolve according to a first-order Markovian transition dynamics. The key

outputs of our analysis comprised the model parameters estimated using an EM algorithm and

a corresponding state trajectory estimated using the Viterbi algorithm. The state trajectory

provided an objective and efficient segmentation of LFP and EEG data. The estimated state-

specific and frequency band-specific beta pdf’s characterized the spectral representation of

each HMM state, whereas the transition matrix characterized the underlying dynamics. Using

the estimated observation pdf’s, we objectively defined neurophysiological activities (e.g.

gamma activity, slow-delta activity) in terms of underlying HMM states. Furthermore, by

using the estimated state transition matrices, we calculated mean duration and mean interval

statistics (as defined in Sec 3.2.4) corresponding to each of these neurophysiological activities.

Our analyses revealed an alternating pattern of states characterized primarily by gamma

and slow-delta activities. The mean duration of the gamma activity was 2.2s ([1.7, 2.8]s) and

1.2s ([0.9, 1.5]s) for the two NHPs, and 2.5s ([1.7, 3.6]s) for the nine human subjects. The

mean duration of the slow-delta activity was 1.6s ([1.2, 2.0]s) and 1.0s ([0.8, 1,2]s) for the two

NHPs, and 1.8s ([1.3, 2.4]s) for the nine human subjects. Our characterizations of the alternat-

ing gamma slow-delta activity revealed five sub-states that show regular sequential transitions.

Thus, our objective beta-HMM analysis framework enabled us to precisely characterize the

dynamics of ketamine-induced gamma and slow-delta activities, and to compare the time-

scales of these neurophysiological states between subjects of the same species.

Our work advances the development and application of LFP or EEG data analysis tools.

The beta-HMM analysis framework falls under the broad category of research aimed at devel-

oping time-frequency state space models to analyze neural dynamics [43, 52, 62–65], and

applying them in principled interpretation of neural time-series data for unconsciousness

research [11, 62]. A few key distinguishing features of the beta-HMM analysis framework are

as follows. The assumption of state-specific and frequency-band specific beta distributions as

marginal distributions of the instantaneous observation vectors allows for a flexible framework

to characterize highly variable spectral profiles. This assumption, along with the assumption of

Markovian state transitions, allowed us to directly characterize the discontinuous switching

among multiple spectral profiles, as well as identify segments with similar spectral properties
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(Figs 3C, 3D; 4C, 4G; and 6C). Furthermore, our beta-HMM analysis framework accounts for

the disjoint nature of data from separate sessions without requiring any concatenation of ses-

sions or consequently any arbitrary choice of concatenation order. Potential extensions of this

work on the statistical methods development front may include modeling the transition matrix

as time-varying, which would account for longer time-scale variations (e.g. varying drug-lev-

els). Furthermore, generalizing the current single-channel LFP or EEG data-based analysis

framework to incorporate multi-channel LFP or EEG data would allow for neurophysiological

characterization of ketamine-induced altered arousal states based on spatio-temporal statistical

relationships in the observed data. Going beyond the context of ketamine-induced altered

arousal states, the analysis framework itself can be relevant in general use-cases where LFP or

EEG data demonstrate discontinuous, repeating transitions among time-limited, band-limited

spectral signatures, such as those observed during sleep [43, 66] or burst suppression in general

anesthesia [67, 68].

Our beta-HMM research can inform future neuroscience inquiries. While there are several

hypotheses for the generation of gamma activity under ketamine [21], there is not yet a clear

understanding of how the alternating gamma slow-delta activity is generated. Preliminary

work indicates that there may be a cycle of cortical inhibition and dis-inhibition due to activ-

ity-dependent ketamine NMDAR inhibition of cortical interneurons and pyramidal neurons

[22]. Our analyses of the NHP datasets using the beta-HMM led to the identification of neuro-

physiological activities that were primarily associated with the period following administration

of a ketamine bolus. The summary statistics from each NHP (Fig 5) inform which frequency

bands show significant activity, and how this activity varies over time. The duration and inter-

val statistics of the alternating gamma and slow-delta activities that we estimated for NHP LFP

can serve as quantitative constraints in the design of rhythm-generating neuronal microcircuit

models that would mimic the neurophysiological dynamics caused by ketamine, similar to

ones previously done for other anesthetics [23, 24, 26, 69, 70]. Furthermore, since ketamine is

also used in treatment of depression [71, 72], in pharmacologic models for schizophrenia [20,

73, 74], and in studies of altered states of consciousness [75], insights into ketamine’s effects

on brain state dynamics will provide neuroscientific insight beyond the field of anesthesia.

Our beta-HMM research can also inform future clinical inquiries. Ketamine is known to

produce distinct oscillatory signatures in the electroencephalogram (EEG) of healthy volun-

teers and patients [9, 10]. These oscillatory signatures are starkly different from those pro-

duced during propofol-induced unconsciousness [76, 77]. These differences in oscillatory

dynamics, particularly the presence of alternating gamma and slow-delta activities under keta-

mine, indicate that spectral markers of propofol-induced unconsciousness are not reliable

markers for tracking ketamine-induced altered arousal states. However, in both the NHP LFP

and human EEG recordings, we observed dramatic changes in the oscillatory state dynamics

between the awake and post-ketamine states, suggesting that the alternating gamma slow-delta

phenomena induced by ketamine is a marker of altered arousal. The existence of consistent

neurophysiological activity observed in EEG following ketamine bolus administration in mul-

tiple patients indicates promise in precise clinical monitoring of these states. Towards this

goal, as demonstrated in this work, the beta-HMM analysis framework can provide precise,

objective characterization of the neurophysiological dynamics associated with ketamine-

induced altered states of arousal. In summary, our work can be regarded as a part of the ongo-

ing neuroscience research efforts to investigate alternating dynamical states of the brain and

how these states transition from one to the other [78]. Alternating brain states have been previ-

ously identified in anesthesia-induced altered states of consciousness across different imaging

modalities, species, analytic tools and anesthetic drugs [11, 79, 80]. The experimental and ana-

lytic framework developed here can be used to investigate differences in brain state dynamics
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between awake and altered states of consciousness. This investigation could be relevant in

future studies looking into the theories of consciousness (e.g. [81]) as well as to improve the

understanding of mechanism of actions of these drugs in therapeutic applications (e.g.

[13, 14]).

There are two primary limitations in both the data set that we analysed here and in our

assumptions. The first limitation is a need for prospective studies in humans and animals with

carefully recorded simultaneous neural, behavioral response and physiological activities.

Future experimental studies with larger cohorts can address the current study’s limitation due

to low number of subjects in both the NHP LFP and human EEG analyses. The consistency of

the alternating gamma-slow spectral activity from 9 patients and 2 NHPs during ketamine-

induced altered arousal states indicate that transition dynamics between the gamma and slow-

delta neurophysiological states can be a candidate biomarker of ketamine-induced uncon-

sciousness. However, to reliably establish these EEG or LFP correlates of unconsciousness,

experimental studies in healthy volunteers and animal subjects with simultaneous monitoring

of behavioral response, physiological parameters and neural activity will be essential. The sec-

ond limitation is a need for extension to real-time tracking of neurophysiological states during

ketamine-induced general anesthesia. Our current approach utilizes the entire data set to cal-

culate appropriate scaling factors for transforming spectral power to real numbers lying

between 0 and 1, and thus (in the present formulation) cannot be executed in real time. A

larger study may allow for the development of a generalized scaling approach. This would facil-

itate objective identification of ketamine neurophysiological states in real-time. While a com-

mon limitation of EEG analysis in real-time OR settings is the presence of motion and other

noise artifacts in recordings, the beta-HMM framework is well poised to handle these artifacts,

as observations that fall far outside the distribution of the signal can be assigned to a distinct

HMM state.

In conclusion, we have developed a detailed analysis framework for ketamine-induced

neurophysiological phenomena. Our work provides a methodological innovation to analyze

switching spectral dynamics in single-channel electrophysiological data. The scaling of the fre-

quency band-wise power to [0, 1] interval followed by its analyses in the beta-HMM frame-

work facilitates estimation across multiple recording sessions, as well as comparisons between

sessions. To our knowledge, this is the first application of an HMM with beta observation dis-

tributions for characterizing neural data. Our work also provides insights into the neural

dynamics due to ketamine anesthesia. By applying our methodological innovation to LFP data

from NHP subjects and EEG data from human patients collected during ketamine anesthesia,

we have identified distinct neurophysiological states by their spectral signatures and their

duration statistics. Our quantitative findings will inform future neurophysiological models as

well as clinical biomarker search. Also, the generalizability of the beta-HMM framework indi-

cates utility beyond what has been reported here. Future work will investigate how the spectral

dynamics revealed by our analysis contribute to ketamine-induced altered states of arousal.

Supporting information

S1 Appendix. In the appendix, we provide additional detail in the calculation of band-wise

power (Sec A1), scaling of the beta-HMM observations (Sec A2), estimation of model

parameters (Sec A3), and EM algorithm (Sec A4). We also provide the algorithm for simulat-

ing a spectrogram with known Markov model parameters (Sec A5, Table A2), and a tutorial

on interpreting beta distributions (Sec A6). In Table A1, we provide a glossary of mathematical

symbols.

(PDF)
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S1 Fig. LFP time series and corresponding spectrograms. A typical 20 second epoch (follow-

ing a high-dose ketamine bolus) of LFP from a single electrode of a multi-electrode array

located in the frontal cortex (vlPFC) of NHP MJ is presented in panel A. Panel B shows the

multitaper spectrogram for the same electrode, and panel C shows the average multitaper spec-

trogram for the vlPFC electrode array. Time 0 corresponds to 400 seconds after the ketamine

bolus was administered. We fit our beta-HMM to the reduced-order representation of the cor-

responding spectrogram (derived using Eqs. (1) and (A1) in S1 Appendix), presented in panel

C. The resulting optimal segmentation is represented by the colored vertical bars overlaid on

the neural time-series in panel A. State 2 is shown in blue, state 3 in red, state 4 in yellow, and

state 5 in green. (State 1, which corresponds to the time before the ketamine bolus, is not pres-

ent in this epoch.).

(TIF)

S2 Fig. NHP LFP spectrograms and corresponding state trajectories. Multitaper spectro-

grams of LFP and corresponding estimated latent state trajectories from 4 sessions in NHP MJ

(A-D) and 5 sessions in NHP LM (E-I).

(TIF)

S3 Fig. Human EEG spectrograms and corresponding state trajectories. Multitaper spectro-

grams of EEG and corresponding estimated latent state trajectories from all 9 human subjects

(A-I). Note that in many patients, the EEG activity before ketamine was administered is less

reliably distinguished from the EEG activity after. However, in most patients (A, B, C, D, F, I)

there is a clear change in the state trajectories after ketamine is administered.

(TIF)

S4 Fig. State- and frequency-specific beta pdfs for NHP MJ session 1. The state-specific and

frequency-band specific beta pdfs corresponding to a 5-state beta-HMM were estimated from

L = 1 session of LFP recording from NHP MJ. For each state (viewed row-wise) and a fre-

quency band (viewed column-wise), the corresponding subplot presents (1) the empirical pdf

plotted as a histogram based on the observations that correspond to the optimal segmentation

of the data sequence, and (2) the continuous beta pdf with parameters estimated by the EM

algorithm. Each color distinguishes a state as in Fig 3.

(TIF)

S5 Fig. State- and frequency-specific beta pdfs for 4 NHP MJ sessions. The state-specific

and frequency-band specific beta pdfs corresponding to a 5-state beta-HMM were estimated

from L = 4 sessions of LFP recording from NHP MJ. For each state (viewed row-wise) and a

frequency band (viewed column-wise), the corresponding subplot presents (1) the empirical

pdf plotted as a histogram based on the observations that correspond to the optimal segmenta-

tion (Viterbi algorithm) across the L = 4 sessions, and (2) the continuous beta pdf with param-

eters estimated by the EM algorithm. Each color distinguishes a state as in Fig 4.

(TIF)

S6 Fig. State- and frequency-specific beta pdfs for 5 NHP LM sessions. The state-specific

and frequency-band specific beta pdfs corresponding to a 5-state beta-HMM were estimated

from L = 5 sessions of LFP recording from NHP LM. For each state (viewed row-wise) and a

frequency band (viewed column-wise), the corresponding subplot presents (1) the empirical

pdf plotted as a histogram based on the observations that correspond to the optimal segmenta-

tion (Viterbi algorithm) across the L = 5 sessions, and (2) the continuous beta pdf with param-

eters estimated by the EM algorithm. Each color distinguishes a state as in Fig 4.

(TIF)
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S7 Fig. State- and frequency-specific beta pdfs for 9 human sessions. The state-specific and

frequency-band specific beta pdfs corresponding to a 6-state beta-HMM were estimated

from L = 9 sessions of EEG recording from 9 human OR patients. For each state (viewed

row-wise) and a frequency band (viewed column-wise), the corresponding subplot presents

(1) the empirical pdf plotted as a histogram based on the observations that correspond to the

optimal segmentation (Viterbi algorithm) across the L = 9 sessions, and (2) the continuous

beta pdf with parameters estimated by the EM algorithm. Each color distinguishes a state as

in Fig 6.

(TIF)

S8 Fig. Patient variability in state-wise mean scaled spectral power. In each state plot, one

dot represents the mean scaled power in a specific frequency band for one patient, where the

mean is calculated from the observations assigned to that state via the Viterbi algorithm. The

mean scaled power across frequencies for each patient are connected with a line. The shaded

region indicates the 95% confidence interval for the mean scaled power across 10000 samples

of the mean of the corresponding beta distribution, where the mean is calculated from 200

independent samples of the beta distribution. Note that while some observed means exceed

the 95% confidence interval of the expected mean of the corresponding estimated beta distri-

bution, the overall trends are consistent across patients.

(TIF)

S9 Fig. Exploration of how frequency resolution affects the outcome of the beta-HMM.

Panels A and B present analysis from NHP MJ sessions 1–4, panels C and D present analysis

from NHP LM sessions 1–5, and panels E and F present analysis from the 9 human EEG ses-

sions. In panels A, C, and E, a portion of the spectrogram is displayed on the top, and two state

trajectories are displayed below, estimated from models with H = 51 frequency bands (i.e. the

highest possible frequency resolution equal to that of the estimated spectrogram) and H = 7�

frequency bands (where 7� frequency bands indicate the canonical frequency bands described

in Sec 3.2.2). Panels B, D, and F present the key duration statistics presented in Sec 4.3 and 4.4

across varying frequency-band resolution. With the exception of the models corresponding to

7�, the canonical frequency bands, all other models utilized evenly spaced frequency bands.

For each model, 4000 Markov sequences of length N = 2000 were simulated using the esti-

mated transition matrix. The mean duration and interval corresponding to the gamma and

slow-delta activities were calculated for each realization of these sequences. Median and 95%

confidence bounds across simulated sequences for models with equally spaced frequency

bands are indicated in grey and, for the model utilizing canonical frequency bands, in blue.

The mean duration and interval calculated from the estimated state trajectory (output of the

Viterbi algorithm which uses the maximum likelihood beta-HMM parameters and the obser-

vations as input) are indicated by a cross (×) symbol. Note that the 95% confidence intervals of

the durations across the varying frequency resolutions almost always overlap. This indicates

that the specification of the frequency bands does not have a critical effect on the inferences

related to the model dynamics. Thus, in the main manuscript, we chose to present the model

estimated from canonical frequency bands that are commonly used to describe neural oscilla-

tions.

(TIF)
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