American Academy of Arts and Sciences. Induction Ceremony October 7, 2017.
The American Academy of Arts and Sciences is of the nation’s most prestigious honorary societies, the academy is also a leading center for independent policy research. Members contribute to academy publications, as well as studies of science and technology policy, energy and global security, social policy and American institutions, the humanities and culture, and education.

Tomorrow, we say good bye to a great scientist and a great person.  I am going to miss you, Howard.

Remembering Howard Eichenbaum


Feb 14-17, 2018 in Washington, DC.  See you there!

INS Washington DC 2018

An example of mixed selectivity in a network model trained on 20 different cognitive tasks.
Yang, G. R., Song, H. F., Newsome, W. T., & Wang, X. J. (2017). Clustering and compositionality of task representations in a neural network trained to perform many cognitive tasksbioRxiv, 183632.

To learn more about mixed selectivity and its importance for cognition, see these papers:
Rigotti, M., Barak, O., Warden, M.R., Wang, X., Daw, N.D., Miller, E.K., & Fusi, S. (2013) The importance of mixed selectivity in complex cognitive tasks. Nature, 497, 585-590, doi:10.1038/nature12160. View PDF »    

Fusi, S., Miller, E.K., and Rigotti, M. (2016) Why neurons mix: High dimensionality for higher cognition.  Current Opinion in Neurobiology. 37:66-74  doi:10.1016/j.conb.2016.01.010. View PDF »

There is a growing consensus that there may be more to working memory than simple maintenance of spiking.  On a single-trial, moment-to-moment basis, memory delay spiking is sparse, not sustained.  Instead, spiking may produce changes in synaptic weights and that is where the working memories are actually stored.

Trübutschek, D., Marti, S., Ojeda, A., King, J. R., Mi, Y., Tsodyks, M., & Dehaene, S. (2017). A theory of working memory without consciousness or sustained activity. Elife, 6.

For further reading see:
Lunqvist, M., Rose, J., Herman, P, Brincat, S.L, Buschman, T.J., and Miller, E.K. (2016) Gamma and beta bursts underlie working memory.  Neuron, published online March 17, 2016. View PDF »

Review of the neural mechanisms behind persistent spiking activity and working memory.

Zylberberg, J., & Strowbridge, B. W. (2017). Mechanisms of persistent activity in cortical circuits: possible neural substrates for working memory. Annual Review of Neuroscience40.

There is little doubt that spiking during memory delays play a role in working memory.  But how persistent is the activity and how are the memories actually stored?  For another perspective see:
Lunqvist, M., Rose, J., Herman, P, Brincat, S.L, Buschman, T.J., and Miller, E.K. (2016) Gamma and beta bursts underlie working memory.  Neuron, published online March 17, 2016. View PDF »

The title says it all.

Slater, J., Ashley, R., Tierney, A., & Kraus, N. (2017). Got Rhythm? Better Inhibitory Control Is Linked with More Consistent Drumming and Enhanced Neural Tracking of the Musical Beat in Adult Percussionists and NonpercussionistsJournal of Cognitive Neuroscience.

Due to a disruption of top-down attentional amplification.

Berkovitch, L., Dehaene, S., & Gaillard, R. (2017). Disruption of Conscious Access in SchizophreniaTrends in Cognitive Sciences.

Gradual progression from sensory to task-related processing in cerebral cortex
Scott L. Brincat*, Markus Siegel*, Constantin von Nicolai, Earl K. Miller


Somewhere along the cortical hierarchy, behaviorally relevant information is distilled from raw sensory inputs. We examined how this transformation progresses along multiple levels of the hierarchy by comparing neural representations in visual, temporal, parietal, and frontal cortices in monkeys categorizing across three visual domains (shape, motion direction, color). Representations in visual areas MT and V4 were tightly linked to external sensory inputs. In contrast, prefrontal cortex (PFC) largely represented the abstracted behavioral relevance of stimuli (task rule, motion category, color category). Intermediate-level areas — posterior inferotemporal (PIT), lateral intraparietal (LIP), and frontal eye fields (FEF) — exhibited mixed representations. While the distribution of sensory information across areas aligned well with classical functional divisions — MT carried stronger motion information, V4 and PIT carried stronger color and shape information — categorical abstraction did not, suggesting these areas may participate in different networks for stimulus-driven and cognitive functions. Paralleling these representational differences, the dimensionality of neural population activity decreased progressively from sensory to intermediate to frontal cortex. This shows how raw sensory representations are transformed into behaviorally relevant abstractions and suggests that the dimensionality of neural activity in higher cortical regions may be specific to their current task.

A review of how the prefrontal cortex and high-level visual cortex interact during perception.

Kornblith, S., & Tsao, D. Y. (2017). How thoughts arise from sights: inferotemporal and prefrontal contributions to vision. Current Opinion in Neurobiology, 46, 208-218.