Rouhinen et al provide evidence for the role of neural oscillations in the limitations of cognitive capacity.  Subjects tracked multiple objects.  Strength of oscillations were different preceding detected vs undetected objects.  Suppression of low-frequency oscillations (<20 Hz) and strengthening of high-frequency oscillations (>20 Hz) in the frontoparietal cortex was correlated with attentional load.   Load-dependent strengthening of 20-90 Hz oscillations was predictive of individual capacity.  This supports hypotheses that oscillations play major role in attention and are responsible for the limited bandwidth of cognition.

Further reading on attention, capacity, and oscillations:

  • Buschman,T.J. and Miller, E.K. (2010) Shifting the Spotlight of Attention: Evidence for Discrete Computations in Cognition. Frontiers in Human Neuroscience. 4(194): 1-9. View PDF »
  • Miller, E.K. and Buschman, T.J. (2013) Cortical circuits for the control of attention.  Current Opinion in Neurobiology.  23:216–222  View PDF »
  • Buschman, T.J. and Miller, E.K. (2009) Serial, covert, shifts of attention during visual search are reflected by the frontal eye fields and correlated with population oscillations. Neuron, 63: 386-396. View PDF »
  • Buschman, T.J. and Miller, E.K. (2007) Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science. 315: 1860-1862  The Scientist’s “Hot Paper” for October 2009. View PDF »
  • Siegel, M., Warden, M.R., and Miller, E.K. (2009) Phase-dependent neuronal coding of objects in short-term memory. Proceedings of the National Academy of Sciences, 106: 21341-21346. View PDF »
About the Author

The Miller Lab uses experimental and theoretical approaches to study the neural basis of the high-level cognitive functions that underlie complex goal-directed behavior.