New result on bioRxiv:
Gamma and beta bursts during working memory read-out suggest roles in its volitional control
Mikael Lundqvist, Pawel Herman, Melissa R Warden, Scott L Brincat, Earl K Miller
doi: https://doi.org/10.1101/122598
Abstract
Working memory (WM) activity is not as stationary or sustained as previously thought. There are brief bursts of gamma (55 to 120 Hz) and beta (20 to 35 Hz) oscillations, the former linked to stimulus information in spiking. We examine these dynamics in relation to read-out from WM, which is still not well understood. Monkeys held a sequence of two objects and had to decide if they matched a subsequent sequence. Changes in the balance of beta/gamma suggested their role in WM control. In anticipation of having to use an object for the match decision, there was an increase in spiking information about that object along with an increase in gamma and a decrease in beta. When an object was no longer needed, beta increased and gamma as well as spiking information about that object decreased. Deviations from these dynamics predicted behavioral errors. Thus, turning up or down beta could regulate gamma and the information in working memory.
About the Author
Miller Lab
The Miller Lab uses experimental and theoretical approaches to study the neural basis of the high-level cognitive functions that underlie complex goal-directed behavior. ekmillerlab.mit.edu