American Academy of Arts and Sciences. Induction Ceremony October 7, 2017.
The American Academy of Arts and Sciences is of the nation’s most prestigious honorary societies, the academy is also a leading center for independent policy research. Members contribute to academy publications, as well as studies of science and technology policy, energy and global security, social policy and American institutions, the humanities and culture, and education.
-
-
Review of the neural mechanisms behind persistent spiking activity and working memory.
Zylberberg, J., & Strowbridge, B. W. (2017). Mechanisms of persistent activity in cortical circuits: possible neural substrates for working memory. Annual Review of Neuroscience, 40.
There is little doubt that spiking during memory delays play a role in working memory. But how persistent is the activity and how are the memories actually stored? For another perspective see:
Lunqvist, M., Rose, J., Herman, P, Brincat, S.L, Buschman, T.J., and Miller, E.K. (2016) Gamma and beta bursts underlie working memory. Neuron, published online March 17, 2016. View PDF » -
Gradual progression from sensory to task-related processing in cerebral cortex
Scott L. Brincat*, Markus Siegel*, Constantin von Nicolai, Earl K. Miller
doi: https://doi.org/10.1101/195602Abstract
Somewhere along the cortical hierarchy, behaviorally relevant information is distilled from raw sensory inputs. We examined how this transformation progresses along multiple levels of the hierarchy by comparing neural representations in visual, temporal, parietal, and frontal cortices in monkeys categorizing across three visual domains (shape, motion direction, color). Representations in visual areas MT and V4 were tightly linked to external sensory inputs. In contrast, prefrontal cortex (PFC) largely represented the abstracted behavioral relevance of stimuli (task rule, motion category, color category). Intermediate-level areas — posterior inferotemporal (PIT), lateral intraparietal (LIP), and frontal eye fields (FEF) — exhibited mixed representations. While the distribution of sensory information across areas aligned well with classical functional divisions — MT carried stronger motion information, V4 and PIT carried stronger color and shape information — categorical abstraction did not, suggesting these areas may participate in different networks for stimulus-driven and cognitive functions. Paralleling these representational differences, the dimensionality of neural population activity decreased progressively from sensory to intermediate to frontal cortex. This shows how raw sensory representations are transformed into behaviorally relevant abstractions and suggests that the dimensionality of neural activity in higher cortical regions may be specific to their current task.
-
Come see Pavlov’s Dogz at Songbyrd DC on Sunday Nov 12 of the SFN meeting.
9:30pm Songbyrd DC 11/12/17
http://www.songbyrddc.com/shows/2017-11-12-pavlolvs-dogzPavlov’s Dogz are a roaming band of neuroscientist-musicians who get together at conference locations around the world to play shows.
Band members:
Tim Bussey
Brad Postle
Earl Miller
Paula Croxson
Charan Ranganath
Joel Voss
Daniela Schiller
Jess Grahn
Mick Rugg
Andy Lee
-
We show how limitations in cognitive capacity (how many thoughts you can think at the same time – very few) may be due to changes in rhythmic coupling between cortical areas. More specifically, feedback coupling breaks down when capacity is exceeded.
Working Memory Load Modulates Neuronal Coupling Dimitris A Pinotsis, Timothy J Buschman, Earl K Miller
doi: https://doi.org/10.1101/192336 -
New manuscript submitted to bioRxiv:
Neuronal rhythms orchestrate cell assembles to distinguish perceptual categories
Morteza Moazami Goudarzi, Jason Cromer, Jefferson Roy, Earl K. Miller
doi: https://doi.org/10.1101/191247Abstract
Categories are reflected in the spiking activity of neurons. However, how neurons form ensembles for categories is unclear. To address this, we simultaneously recorded spiking and local field potential (LFP) activity in the lateral prefrontal cortex (lPFC) of monkeys performing a delayed match to category task with two independent category sets (Animals: Cats vs Dogs; Cars: Sports Cars vs Sedans). We found stimulus and category information in alpha and beta band oscillations. Different category distinctions engaged different frequencies. There was greater spike field coherence (SFC) in alpha (~8-14 Hz) for Cats and in beta (~16-22 Hz) for Dogs. Cars showed similar differences, albeit less pronounced: greater alpha SFC for Sedans and greater beta SFC for Sports Cars. Thus, oscillatory rhythms can help coordinate neurons into different ensembles. Engagement of different frequencies may help differentiate the categories. -
Miller, Earl. “Earl K. Miller.” Neuron 95 (2017): 1237.
DOI: http://dx.doi.org/10.1016/j.neuron.2017.08.035Earl Miller studies the neural basis of high-level cognitive functions. In an interview with Neuron, he discusses the need for a holistic approach to figure out the brain, how ideas don’t happen in a vacuum, and the challenge of convincing the public that science produces facts; he also shares an open invitation to see Pavlov’s Dogz. View PDF
-
Miller Lab postdoc Mikael Lunqvist won a NARSAD Young Investigator Grant. Congrats, Mikael!
Read Mikael’s recent paper to see what the fuss is all about:
Lunqvist, M., Rose, J., Herman, P, Brincat, S.L, Buschman, T.J., and Miller, E.K. (2016) Gamma and beta bursts underlie working memory. Neuron, published online March 17, 2016. View PDF »Info about NARSAD grants:
https://www.bbrfoundation.org/grants-prizes/grantsHere’s Mikael:
/research/team-member/mikael-lundqvist/ -
So says Feedspot. And they gave us a badge.
http://blog.feedspot.com/neuroscience_blogs/
-
Miller Lab Alumnus, Wael Asaad, shows that neurons in the prefrontal cortex can figure out which prior events get credit for the consequences of our actions.
Asaad, W. F., Lauro, P. M., Perge, J. A., & Eskandar, E. N. (2017). Prefrontal Neurons Encode a Solution to the Credit-Assignment Problem. Journal of Neuroscience, 37(29), 6995-7007.