Sustained activity has long been thought to be the neural substrate of working memory. But the evidence is based on averaging neural activity across trials. A closer examination reveals that something more complex is happening and supports a very different model of working memory.
Gamma and Beta Bursts Underlie Working Memory
Mikael Lundqvist, Jonas Rose, Pawel Herman, Scott L. Brincat, Timothy J. Buschman, Earl K. Miller
Neuron, published online March 17, 2016
Summary
Working memory is thought to result from sustained neuron spiking. However, computational models suggest complex dynamics with discrete oscillatory bursts. We analyzed local field potential (LFP) and spiking from the prefrontal cortex (PFC) of monkeys performing a working memory task. There were brief bursts of narrow-band gamma oscillations (45–100 Hz), varied in time and frequency, accompanying encoding and re-activation of sensory information. They appeared at a minority of recording sites associated with spiking reflecting the to-be-remembered items. Beta oscillations (20–35 Hz) also occurred in brief, variable bursts but reflected a default state interrupted by encoding and decoding. Only activity of neurons reflecting encoding/decoding correlated with changes in gamma burst rate. Thus, gamma bursts could gate access to, and prevent sensory interference with, working memory. This supports the hypothesis that working memory is manifested by discrete oscillatory dynamics and spiking, not sustained activity.
About the Author
Miller Lab
The Miller Lab uses experimental and theoretical approaches to study the neural basis of the high-level cognitive functions that underlie complex goal-directed behavior. ekmillerlab.mit.edu