More evidence for mixed selectivity.  Mixed selectivity is “a neural encoding scheme in which different task variables and behavioral choices are combined indiscriminately in a non-linear fashion within the same population of neurons. This scheme generates a high-dimensional non-linear representational code that allows for a simple linear readout of multiple variables from the same network of neurons” (Fusi et al., 2016).  It adds computational horsepower to the brain.  In this case, the evidence is from human parietal cortex.

Zhang, C. Y., Aflalo, T., Revechkis, B., Rosario, E. R., Ouellette, D., Pouratian, N., & Andersen, R. A. (2017). Partially Mixed Selectivity in Human Posterior Parietal Association Cortex. Neuron.

For further reading:
Rigotti, M., Barak, O., Warden, M.R., Wang, X., Daw, N.D., Miller, E.K., & Fusi, S. (2013) The importance of mixed selectivity in complex cognitive tasks. Nature, 497, 585-590, doi:10.1038/nature12160. View PDF »

Fusi, S., Miller, E.K., and Rigotti, M. (2016) Why neurons mix: High dimensionality for higher cognition.  Current Opinion in Neurobiology. 37:66-74  doi:10.1016/j.conb.2016.01.010. View PDF »

About the Author


The Miller Lab uses experimental and theoretical approaches to study the neural basis of the high-level cognitive functions that underlie complex goal-directed behavior. ekmillerlab.mit.edu