A review on issues to consider when studying the brain by perturbing (and measuring) it. Very thoughtful.
Navigating the Neural Space in Search of the Neural Code
Mehrdad Jazayer and Arash Afraz
A review on issues to consider when studying the brain by perturbing (and measuring) it. Very thoughtful.
Navigating the Neural Space in Search of the Neural Code
Mehrdad Jazayer and Arash Afraz
An excellent and comprehensive review of the brain basis of visual attention. Worthy of yours.
Moore, T., & Zirnsak, M. (2017). Neural Mechanisms of Selective Visual Attention. Annual Review of Psychology, 68, 47-72.
A model of the collaboration and distribution of function between the prefrontal cortex and parietal cortex.
Working memory and decision making in a fronto-parietal circuit model
John D Murray, Jorge H Jaramillo, Xiao-Jing Wang
doi: https://doi.org/10.1101/104802
The anterior cingulate and FEF coordinate through theta and beta phase synchronization between spikes in one and local field potential in the other.
Babapoor-Farrokhran, S., Vinck, M., Womelsdorf, T., & Everling, S. (2017). Theta and beta synchrony coordinate frontal eye fields and anterior cingulate cortex during sensorimotor mapping. Nature Communications, 8, 13967.
The brain monitors simultaneous sensory input by “time division multiplexing”, a rhythmic juggling of the two streams of information.
Evidence for time division multiplexing of multiple simultaneous items in a sensory coding bottleneck
Valeria C Caruso, Jeffrey T Mohl, Chris Glynn, JungAh Lee, Shawn M Willett, Azeem Zaman, Rolando Estrada, Surya Tokdar, Jennifer M Groh
Still think that single neurons with specific functions rule the brain? Let us persuade you otherwise. We argue that cognitive control stems from dynamic, context-dependent population coding.
Stokes, M., Buschman, T.J., and Miller, E.K. (2017) Dynamic coding for flexible cognitive control. The Wiley Handbook of Cognitive Control, The Wiley Handbook of Cognitive Control, Edited by Tobias Egner, John Wiley & Sons, 2017(Chichester, West Sussex, UK). View PDF
The title says it all. A comprehensive review on how salience is determined and used by the brain.
Veale, R., Hafed, Z. M., & Yoshida, M. (2017). How is visual salience computed in the brain? Insights from behaviour, neurobiology and modelling. Phil. Trans. R. Soc. B, 372(1714), 20160113.
This review of the neural basis of working memory argues that working memory is a property of many brain areas working in concert. Prefrontal vs sensory cortical areas differ in their degrees of abstraction and how they are tied to action. They argue that the persistent activity that seems to underlie working memory is a general product of cortical networks.
Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R., & Haynes, J. D. (2017). The Distributed Nature of Working Memory. Trends in Cognitive Sciences.
I would add that persistent activity may not be so persistent:
Lunqvist, M., Rose, J., Herman, P, Brincat, S.L, Buschman, T.J., and Miller, E.K. (2016) Gamma and beta bursts underlie working memory. Neuron, published online March 17, 2016. View PDF »
Stokes, M., & Spaak, E. (2016). The Importance of Single-Trial Analyses in Cognitive Neuroscience. Trends in cognitive sciences.
Stokes, M. G. (2015). ‘Activity-silent’working memory in prefrontal cortex: a dynamic coding framework. Trends in cognitive sciences, 19(7), 394-405.
Stokes, M., Buschman, T.J., and Miller, E.K. (in press) Dynamic coding for flexible cognitive control. Wiley Handbook of Cognitive Control.
Randoph Helfrich and Robert Knight review evidence that the infrastructure of cognitive control is rhythmic. The general idea is that the prefrontal cortex controls large-scale oscillatory dynamics in the cortex and subcortex. But there is much more. Do yourself a favor: Read it.
Helfrich, R. F., & Knight, R. T. (2016). Oscillatory Dynamics of Prefrontal Cognitive Control. Trends in Cognitive Sciences.
Alavash et al show how changes in network dynamics in the beta (16-28 Hz) band. Faster perceptual decisions occurred when beta-coupling became more local than global. The also found different network states in different cortical areas were associated with faster decisions. This paper lends support for recent suggestions that cortical communication is regulated via beta synchrony.
Large-scale network dynamics of beta-band oscillations underlie auditory perceptual decision making
Mohsen Alavash, Christoph Daube, Malte Woestmann, Alex Brandmeyer, Jonas Obleser
doi: https://doi.org/10.1101/095356
See also:
Buschman, T.J., Denovellis, E.L., Diogo, C., Bullock, D. and Miller, E.K. (2012) Synchronous oscillatory neural ensembles for rules in the prefrontal cortex.  Neuron. 76: 838-846. View PDF »
Buschman T.J., Miller E.K. (2014)  Goal-direction and top-down control. Philos Trans R Soc Lond B Biol Sci. 2014 Nov 5;369(1655). View PDF »