• Our new paper describing a new model of working memory.  Actually, not so much a new model as an update to the classic model. The classic model posited that we hold thoughts “in mind” (i.e., in working memory) via the persistent spiking of neurons.  That is not wrong.  It is right to a certain level of approximation. There is little doubt that spikes help maintain working memories. However, a closer examination revealed that there is much more going on than persistent spiking.

    It is important to keep in mind (pun intended) that virtually all evidence for persistent spiking comes from experiments that averaged neural activity across trials.  The assumption was that averaging boosts signal and decreases noise (“noise” meaning changes in activity from trial to trial). But what if that noise was not noise but real neural dynamics?  We don’t always think about the same thing in the same way.  Averaging assumes we do.

    With this in mind, we and others have been leveraging multiple-electrode recording to examine neural activity in “real time” (on individual trials).  This has revealed that working memory-related spiking occurs in sparse, coordinated bursts of activity.  It also revealed oscillatory dynamics between brain waves in two frequency bands, beta and gamma.  Gamma seems to act as a carrier wave that maintains the contents of working memory. Beta seems carry the top-down control signals that allow us to exert volitional control over working memory.

    Miller, E.K., Lundqvist, M., and Bastos, A.M. Working Memory 2.0 Neuron  DOI:https://doi.org/10.1016/j.neuron.2018.09.023  (Download a *free* copy for the next 50 days)

    Here’s the abstract:
    Working memory is the fundamental function by which we break free from reflexive input-output reactions to gain control over our own thoughts. It has two types of mechanisms: online maintenance of information and its volitional or executive control. Classic models proposed persistent spiking for maintenance but have not explicitly addressed executive control. We review recent theoretical and empirical studies that suggest updates and additions to the classic model. Synaptic weight changes between sparse bursts of spiking strengthen working memory maintenance. Executive control acts via interplay between network oscillations in gamma (30–100 Hz) in superficial cortical layers (layers 2 and 3) and alpha and beta (10–30 Hz) in deep cortical layers (layers 5 and 6). Deep-layer alpha and beta are associated with top-down information and inhibition. It regulates the flow of bottom-up sensory information associated with superficial layer gamma. We propose that interactions between different rhythms in distinct cortical layers underlie working memory maintenance and its volitional control.

  • Wasmuht, D. F., Spaak, E., Buschman, T. J., Miller, E. K., & Stokes, M. G. (2018). Intrinsic neuronal dynamics predict distinct functional roles during working memory. Nature Communications.

    Abstract:
    Working memory (WM) is characterized by the ability to maintain stable representations over time; however, neural activity associated with WM maintenance can be highly dynamic. We explore whether complex population coding dynamics during WM relate to the intrinsic temporal properties of single neurons in lateral prefrontal cortex (lPFC), the frontal eye fields (FEF), and lateral intraparietal cortex (LIP) of two monkeys (Macaca mulatta). We find that cells with short timescales carry memory information relatively early during memory encoding in lPFC; whereas long-timescale cells play a greater role later during processing, dominating coding in the delay period. We also observe a link between functional connectivity at rest and the intrinsic timescale in FEF and LIP. Our results indicate that individual differences in the temporal processing capacity predict complex neuronal dynamics during WM, ranging from rapid dynamic encoding of stimuli to slower, but stable, maintenance of mnemonic information.

  • Our dual Perspectives “debate” paper re: Does persistent spiking hold memories “in mind” (i.e., working memory):
    Paper and link to opposing paper: Working Memory: Delay Activity, Yes! Persistent Activity? Maybe Not

    Press release: To understand working memory, scientists must resolve this debate

    Our two cents:
    Surprised this became a debate.  All we are saying is that if you look at delay activity more closely (on single trials) it’s bursty. Something else (synaptic weight changes) could be helping. Adding synaptic mechanisms saves energy and confers functional advantages.
    Lundqvist, M., Rose, J., Herman, P., Brincat, S. L., Buschman, T. J., & Miller, E. K. (2016). Gamma and beta bursts underlie working memory. Neuron, 90(1), 152-164.

    And it leaves room for network rhythms that may underlie executive control of working memory.
    Bastos, A. M., Loonis, R., Kornblith, S., Lundqvist, M., & Miller, E. K. (2018). Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory. Proceedings of the National Academy of Sciences, 201710323.

    Lundqvist, M., Herman, P., Warden, M. R., Brincat, S. L., & Miller, E. K. (2018). Gamma and beta bursts during working memory readout suggest roles in its volitional control. Nature Communications, 9(1), 394.

    Yuri Buzsaki pointed out that his lab reported that in PFC working memories are maintained by internally generated cell assembly sequences. The few persistently firing neurons were interneurons.
    Fujisawa S, Amarasingham A, Harrison MT, Buzsáki G.
    Nat Neurosci. 2008.

    Also, the idea that synaptic weight changes help maintain working memories is not altogether new.  Goldman-Rakic suggested such a mechanism.  Her lab found that sparse firing in the PFC produces temporary changes in synaptic weights.  Importantly, if neurons firing too fast, inhibitory mechanisms kick in and you don’t get the weight changes. See:

    Wang, Y., Markram, H., Goodman, P.H., Berger, T.K., Ma, J., and Goldman-Rakic, P.S. (2006). Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat. Neurosci. 9, 534–542.

    But, hey, don’t take our word for it:  Look at memory delay activity on single trials and tell us what *you* see.

  • Nice result from Buschman Lab.  Error-correcting dynamics introduce bias into working memory while reducing noise.

    Error-correcting dynamics in visual working memory
    Matthew F Panichello, Brian DePasquale, Jonathan W Pillow, Timothy Buschman
    doi: https://doi.org/10.1101/319103

  • Press release for our new paper:
    A heavy working memory load may sink brainwave ‘synch’

    The paper:
    Pinotsis, D.A., Buschman, T.J. and Miller, E.K. (2018) Working Memory Load Modulates Neuronal Coupling. Cerebral Cortex.  https://doi.org/10.1093/cercor/bhy065  View PDF

  • Pinotsis, D.A., Buschman, T.J. and Miller, E.K. (2018) Working Memory Load Modulates Neuronal Coupling. Cerebral Cortex, 2018 https://doi.org/10.1093/cercor/bhy065

    Abstract: There is a severe limitation in the number of items that can be held in working memory. However, the neurophysiological limits remain unknown. We asked whether the capacity limit might be explained by differences in neuronal coupling. We developed a theoretical model based on Predictive Coding and used it to analyze Cross Spectral Density data from the prefrontal cortex (PFC), frontal eye fields (FEF), and lateral intraparietal area (LIP). Monkeys performed a change detection task. The number of objects that had to be remembered (memory load) was varied (1–3 objects in the same visual hemifield). Changes in memory load changed the connectivity in the PFC–FEF–LIP network. Feedback (top-down) coupling broke down when the number of objects exceeded cognitive capacity. Thus, impaired behavioral performance coincided with a break-down of Prediction signals. This provides new insights into the neuronal underpinnings of cognitive capacity and how coupling in a distributed working memory network is affected by memory load.

  • An article in Science News about new ideas on the role of brain waves.  It also discuss three new papers from the Miller Lab.

    Brain waves may focus attention and keep information flowing  Science New March 13, 2018

    Here are the papers that are discussed:

    Lundqvist, M., Herman, P. Warden, M.R., Brincat, S.L., and Miller, E.K. (2018) Gamma and beta bursts during working memory read-out suggest roles in its volitional control. Nature Communications. 9, 394   View PDF

    Wutz, A., Loonis, R., Roy, J.E., Donoghue, J.A., and Miller, E.K. (2018)  Different levels of category abstraction by different dynamics in different prefrontal areas. Neuron 97: 1-11.  View PDF

    Bastos, A.M., Loonis, R., Kornblith, S., Lundqvist, M., and Miller, E.K. (2018)  Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory.  Proceedings of the National Academy of Sciences.  View PDF

  • Lundqvist, M., Herman, P. Warden, M.R., Brincat, S.L., and Miller, E.K. (2018) Gamma and beta bursts during working memory read-out suggest roles in its volitional control. Nature Communications. 9, Article number: 394 doi:10.1038/s41467-017-02791-8

    Abstract:
    Working memory (WM) activity is not as stationary or sustained as previously thought. There are brief bursts of gamma (~50–120 Hz) and beta (~20–35 Hz) oscillations, the former linked to stimulus information in spiking. We examined these dynamics in relation to readout and control mechanisms of WM. Monkeys held sequences of two objects in WM to match to subsequent sequences. Changes in beta and gamma bursting suggested their distinct roles. In anticipation of having to use an object for the match decision, there was an increase in gamma and spiking information about that object and reduced beta bursting. This readout signal was only seen before relevant test objects, and was related to premotor activity. When the objects were no longer needed, beta increased and gamma decreased together with object spiking information. Deviations from these dynamics predicted behavioral errors. Thus, beta could regulate gamma and the information in WM.

  • This is the first of three papers that all lead to the same general conclusion:  Sensory (bottom-up) information is fed forward through cortex by gamma (>50 Hz) waves in superficial cortical layers. Executive (top-down) information is fed back through cortex by alpha/beta waves (4-22 Hz) in deep cortical layers. The beta waves in deep layers regulate superficial layer gamma in a push-pull fashion thereby allowing top-down information to control the flow of bottom-up sensory information. This allows volitional control over what we hold in mind.  Stayed tuned for the other two papers. They will appear in the next few weeks.

    Bastos, A.M., Loonis, R., Kornblith, S., Lundqvist, M., and Miller, E.K. (2018) Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory. Proceedings of the National Academy of Sciences. published ahead of print January 16, 2018, doi:10.1073/pnas.1710323115

    Read MIT press release here.

  • New paper accepted:

    “Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory”

    Bastos, Loonis, Kornblith, Lundqvist, and Miller. PNAS, in press  

    Coming soon. Stay tuned.